Accounting for persistence and volatility of good-level real exchange rates: the role of sticky information

Mario J. Crucini,¹ Mototsugu Shintani,² Takayuki Tsuruga³

¹Vanderbilt University

²Vanderbilt University and Bank of Japan

³Bank of Japan

Macroeconomic Conference, 2007

< ロ > < 同 > < 三 > < 三 > 三 = < の < ○</p>

Speed of adjustment to LOP = Calvo parameter

Motivation: Law-of-One-Price (LOP) deviation

 Like PPP, the speed of adjustment toward a long-run LOP level is measured by estimating α_i of

$$\boldsymbol{q}_t^j = \boldsymbol{\alpha}_j \boldsymbol{q}_{t-1}^j + \boldsymbol{\nu}_t^j.$$

q_t^j : (log) real exchange rate for good *j*

Kehoe and Midrigan (2007, KM) proved that the Calvo sticky price model implies

$$q_t^j = \lambda_j q_{t-1}^j + \nu_t^j,$$

where λ_j : the probability of no price change (Calvo parameter, degree of price stickiness)

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Speed of adjustment to LOP = Calvo parameter

Motivation: Law-of-One-Price (LOP) deviation

 Like PPP, the speed of adjustment toward a long-run LOP level is measured by estimating α_i of

$$\boldsymbol{q}_t^j = \boldsymbol{\alpha}_j \boldsymbol{q}_{t-1}^j + \boldsymbol{\nu}_t^j.$$

 q_t^j : (log) real exchange rate for good *j*

 Kehoe and Midrigan (2007, KM) proved that the Calvo sticky price model implies

$$\boldsymbol{q}_t^j = \boldsymbol{\lambda}_j \boldsymbol{q}_{t-1}^j + \boldsymbol{\nu}_t^j,$$

where λ_j : the probability of no price change (Calvo parameter, degree of price stickiness)

Persistence and volatility puzzles

KM's findings on persistence and volatility

- Using recent micro studies, λ_j is observable.
 KM find the following two puzzles:
- 1. If the model is correct, $\alpha_j = \lambda_j$. However,

 $\hat{\alpha}_j \gg \lambda_j$ (Persistence puzzle)

2. If the model is correct, it will fully explain volatility. However,

 $\hat{std}(q_t^{j,data}) \gg std(q_t^{j,model})$ (Volatility puzzle)

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

Persistence and volatility puzzles

KM's findings on persistence and volatility

- Using recent micro studies, λ_j is observable.
 KM find the following two puzzles:
- 1. If the model is correct, $\alpha_i = \lambda_i$. However,

 $\hat{\alpha}_j \gg \lambda_j$ (Persistence puzzle)

2. If the model is correct, it will fully explain volatility. However,

 $\hat{std}(q_t^{j,data}) \gg std(q_t^{j,model})$ (Volatility puzzle)

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

Persistence and volatility puzzles

KM's findings on persistence and volatility

- Using recent micro studies, λ_j is observable.
 KM find the following two puzzles:
- 1. If the model is correct, $\alpha_i = \lambda_i$. However,

$\hat{\alpha}_{j} \gg \lambda_{j}$ (Persistence puzzle)

2. If the model is correct, it will fully explain volatility. However,

 $\hat{std}(q_t^{j,data}) \gg std(q_t^{j,model})$ (Volatility puzzle)

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

Persistence and volatility puzzles

KM's findings on persistence and volatility

- Using recent micro studies, λ_j is observable.
 KM find the following two puzzles:
- 1. If the model is correct, $\alpha_i = \lambda_i$. However,

 $\hat{\alpha}_j \gg \lambda_j$ (Persistence puzzle)

2. If the model is correct, it will fully explain volatility. However,

 $\hat{std}(q_t^{j,data}) \gg std(q_t^{j,model})$ (Volatility puzzle)

◆□ → ◆□ → ◆目 → ▲目 → ◆○ ◆

Persistence and volatility puzzles

KM's findings on persistence and volatility

- Using recent micro studies, λ_j is observable.
 KM find the following two puzzles:
- 1. If the model is correct, $\alpha_i = \lambda_j$. However,

 $\hat{\alpha}_j \gg \lambda_j$ (Persistence puzzle)

2. If the model is correct, it will fully explain volatility. However,

 $\hat{std}(q_t^{j,data}) \gg std(q_t^{j,model})$ (Volatility puzzle)

うせん 単前 本語を入所を入口を

- Contribution of our paper

Contributions of this paper

1. Confirm KM's findings with highly disaggregated panel data

- Crucini and Shintani's (2007) data
- Highly disaggregated data with 165 goods. (KM: 66 goods)
- Panel data of good-level RER between cities in US and Canada. (KM: time series)

2. Propose a model to solve the two puzzles.

- Integrate sticky information with the standard Calvo sticky price model
- Add sticky information by Mankiw and Reis (2002)
- We call the model 'dual stickiness' model.

- Contribution of our paper

Contributions of this paper

- 1. Confirm KM's findings with highly disaggregated panel data
 - Crucini and Shintani's (2007) data
 - Highly disaggregated data with 165 goods. (KM: 66 goods)
 - Panel data of good-level RER between cities in US and Canada. (KM: time series)
- 2. Propose a model to solve the two puzzles.
 - Integrate sticky information with the standard Calvo sticky price model
 - Add sticky information by Mankiw and Reis (2002)
 - We call the model 'dual stickiness' model.

Good-level Real Exchange Rates

- Contribution of our paper

Intuition

Intuition: Why can dual stickiness model solve the puzzles?

- 1. Persistence Puzzle
 - Even if price adjustment is very fast, good-price adjustment can be slow due to information stickiness (ω_i ↑).
 - ► Persistence ↑.

2. Volatility Puzzle

- ► Even if price adjustment is very fast, good-prices can be almost unaltered due to information stickiness ($\omega_j \uparrow$).
- ▶ RER keeps track of volatile nominal exchange rate.
- Volatility ↑.

- Contribution of our paper

Intuition

Intuition: Why can dual stickiness model solve the puzzles?

- 1. Persistence Puzzle
 - Even if price adjustment is very fast, good-price adjustment can be slow due to information stickiness (ω_i ↑).
 - ► Persistence ↑.
- 2. Volatility Puzzle
 - ► Even if price adjustment is very fast, good-prices can be almost unaltered due to information stickiness (ω_j ↑).
 - RER keeps track of volatile nominal exchange rate.
 - Volatility ↑.

-Model & Data

-Overview of the model

Overview of the model: Two-country general equilibrium model

- Households
 - $U(c_t, n_t) = \log c_t \chi n_t$ with cash-in-advance constraint.

Firms producing good j

- sell goods in monopolistically competitive domestic and foreign local markets.
- set price for good *j* in each local market (local currency pricing)
- face two constraints:
- 1. cannot change price with prob. λ_j .
- 2. cannot update info. with prob. ω_j .

Governments

control money growth rates. AR(1)

-Model & Data

-Overview of the model

Sketch of dual stickiness model (Calvo model with info. delay)

- Dual stickiness model has two nominal rigidities. (price & information)
- Under sticky prices, the domestic optimal price is

$$\begin{split} \hat{P}_{H,t}^{j} &= (1 - \beta \lambda_{j}) \sum_{h=0}^{\infty} (\beta \lambda_{j})^{h} \mathbb{E}_{t}(\hat{W}_{t+h}) \\ \hat{P}_{F,t}^{j} &= (1 - \beta \lambda_{j}) \sum_{h=0}^{\infty} (\beta \lambda_{j})^{h} \mathbb{E}_{t}(\hat{S}_{t+h} + \hat{W}_{t+h}^{*}) \end{split}$$

 $\hat{W}_t(\hat{W}_t^*)$: nominal wages in the home (foreign) country. S_t : nominal exchange rate.

-Overview of the model

Sketch of dual stickiness model (2)

- Sticky information: a fraction of firms cannot have the newest information
 - ▶ Prob. ω_j : use info. set they last updated $\Rightarrow \mathbb{E}_{t-k} \hat{P}^j_{H,t}$, $\mathbb{E}_{t-k} \hat{P}^j_{F,t}$
 - Prob. 1 ω_j : use the newest info. set $\Rightarrow \hat{P}^j_{H,t}, \hat{P}^j_{F,t}$
 - The index for newly set prices \hat{X}_t^j collects these prices.
- Due to Calvo assumption,

$$\hat{P}_t^j = \lambda_j \hat{P}_{t-1}^j + (1 - \lambda_j) \hat{X}_t^j$$

• Good-level RER is given by $q_t^j = \hat{S}_t + \hat{P}_t^{j*} - \hat{P}_t^j$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Good-level Real Exchange Rates

-Model & Data

-Overview of Data

Overview of Data: Worldwide Cost of Living Survey

- Prices from 13 US × 4 CAN cities:
- Total of 52 cross-border city pairs
- # of goods = 165. Annual data over 1990-2005.

Persistence Puzzle

1. KM's benchmark case ($\omega_j = 0$)

Calvo model without info. delay

2. Our dual stickiness model ($\omega_j \ge 0$)

Calvo model with info. delay

Calvo model's predictions (No information delay)

- We estimate the model with the annual data.
- We have λ_j: monthly infrequency of price change from micro studies.
- Panel version of KM's benchmark case (i.i.d. money growth)

AR(1)
$$q_{i,t}^{j} = \lambda_{j}^{12}q_{i,t-1}^{j} + u'\tilde{D}_{t} + \zeta_{i}^{j} + \nu_{i,t}^{j}$$

- i: cross-border city pair (e.g., NY and Tronto)
- If the Calvo model is correct,
- our estimate of AR(1) coef. $\hat{\alpha}_j = \lambda_j^{12}$ with annual data

Calvo model's predictions (No information delay)

- We estimate the model with the annual data.
- We have λ_j: monthly infrequency of price change from micro studies.
- Panel version of KM's benchmark case (i.i.d. money growth)

AR(1)
$$q_{i,t}^{j} = \lambda_{j}^{12}q_{i,t-1}^{j} + u'\tilde{D}_{t} + \zeta_{i}^{j} + \nu_{i,t}^{j}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- i: cross-border city pair (e.g., NY and Tronto)
- If the Calvo model is correct,
- our estimate of AR(1) coef. $\hat{\alpha}_j = \lambda_j^{12}$ with annual data

Calvo model's predictions (No information delay)

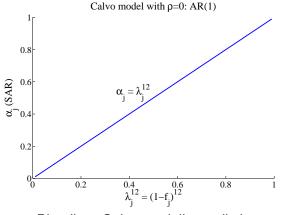
- We estimate the model with the annual data.
- We have λ_j: monthly infrequency of price change from micro studies.
- Panel version of KM's benchmark case (i.i.d. money growth)

AR(1)
$$q_{i,t}^{j} = \lambda_{j}^{12}q_{i,t-1}^{j} + u'\tilde{D}_{t} + \zeta_{i}^{j} + \nu_{i,t}^{j}$$

- i: cross-border city pair (e.g., NY and Tronto)
- If the Calvo model is correct,
- our estimate of AR(1) coef. $\hat{\alpha}_j = \lambda_j^{12}$ with annual data

-Calvo model

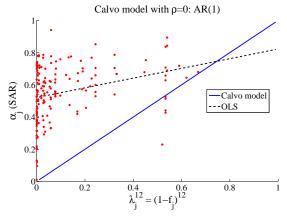
Persistence Puzzle: KM's benchmark case



Blue line: Calvo model's prediction

-Calvo model

Persistence Puzzle: KM's benchmark case



Black dashed line: OLS line from red points.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Dual Stickness model

Dual stickiness model's prediction ($\omega_j > 0$)

 Panel version of good-level RER under dual stickiness model

AR(4)
$$q_{i,t}^{j} = \sum_{r=1}^{4} \Psi_{r} q_{i,t-r} + u' \tilde{D}_{t} + \zeta_{i}^{j} + \nu_{i,t}^{j}$$

- In a general AR(p) model, a persistence measure is the sum of autoregressive coefficients (SAR).
- If dual stickiness model is correct, $\alpha_j = \sum_{r=1}^4 \Psi_r$ must be

$$\hat{\alpha}_j = 1 - (1 - \lambda_j^{12})(1 - \rho^{12})(1 - \omega_j^{12})(1 - \omega_j^{12}\rho^{12}).$$

So, $\omega_j \uparrow \Rightarrow$ persistence $\uparrow !!$

- Dual Stickness model

Dual stickiness model's prediction ($\omega_j > 0$)

 Panel version of good-level RER under dual stickiness model

AR(4)
$$q_{i,t}^{j} = \sum_{r=1}^{4} \Psi_{r} q_{i,t-r} + u' \tilde{D}_{t} + \zeta_{i}^{j} + \nu_{i,t}^{j}$$

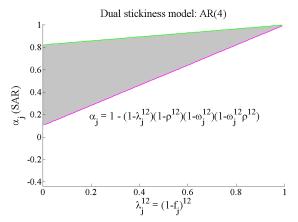
- In a general AR(p) model, a persistence measure is the sum of autoregressive coefficients (SAR).
- If dual stickiness model is correct, $\alpha_j = \sum_{r=1}^4 \Psi_r$ must be

$$\hat{\alpha}_j = 1 - (1 - \lambda_j^{12})(1 - \rho^{12})(1 - \omega_j^{12})(1 - \omega_j^{12}\rho^{12}).$$

So, $\omega_j \uparrow \Rightarrow$ persistence $\uparrow !!$

- Dual Stickness model

Persistence Puzzle: dual stickiness model

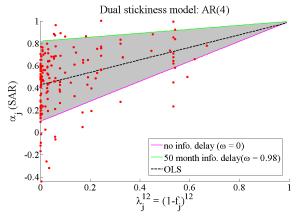


Purple line: No info. delay, Green line: 50 month info. delay

●●● 単則 《山》《山》 《四》 《日》

- Dual Stickness model

Persistence Puzzle: dual stickiness model



Black dashed line: OLS line from red points.

- Dual Stickness model

How much should be information stickiness needed to explain persistence?

	$median(lpha_{i}^{theory}/lpha_{i}^{data})$				
ω	0	0.5	0.9	0.95	0.98
Bils and Klenow's data	0.31	0.32	0.79	1.21	1.53

- Our model can explain 100% of the median of persistence if
- $\omega = 0.93$ with Bils and Klenow's data
- ($\omega = 0.89$ with Nakamura and Steinsson's data)
- Avg. duration btwn info. updates is 14 and 9.5 months, resp.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

- Dual Stickness model

How much should be information stickiness needed to explain persistence?

	$median(lpha_{i}^{theory}/lpha_{i}^{data})$				
ω	0	0.5	0.9	0.95	0.98
Bils and Klenow's data	0.31	0.32	0.79	1.21	1.53

- Our model can explain 100% of the median of persistence if
- $\omega = 0.93$ with Bils and Klenow's data
- ($\omega = 0.89$ with Nakamura and Steinsson's data)
- Avg. duration btwn info. updates is 14 and 9.5 months, resp.

Volatility Puzzle

1. KM's benchmark case ($\omega_j = 0$)

Calvo model without info. delay

2. Our dual stickiness model ($\omega_j \ge 0$)

Calvo model with info. delay

Calvo model

Calvo model's predictions (No information delay)

We compute std ratio of the theory to the data in terms of a time varying component.

$$median\left[\frac{std(q_{i,t}^{j,theory})}{std(q_{i,t}^{j,data})}\right] = 0.13 \quad \text{from Bils \& Klenow}$$

-Calvo model

How much should be information stickiness needed to explain volatility?

	$median[std(q^{j,theory})/std(q^{j,data})]$				
ω	0	0.5	0.9	0.95	0.98
Bils and Klenow's data	0.13	0.18	0.69	1.13	1.95

- Our model can explain 100% of the median of volatility if
- $\omega = 0.94$ with Bils and Klenow's data;
- ($\omega = 0.92$ with Nakamura and Steinsson's data.)
- Avg. duration btwn info. updates is 17 and 12 months.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

-Calvo model

How much should be information stickiness needed to explain volatility?

$median[std(q^{j,theory})/std(q^{j,data})]$					
ω	0	0.5	0.9	0.95	0.98
Bils and Klenow's data	0.13	0.18	0.69	1.13	1.95

Our model can explain 100% of the median of volatility if

- $\omega = 0.94$ with Bils and Klenow's data;
- ($\omega = 0.92$ with Nakamura and Steinsson's data.)
- Avg. duration btwn info. updates is 17 and 12 months.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

-Calvo model

How much should be information stickiness needed to explain volatility?

$median[std(q^{j,theory})/std(q^{j,data})]$					
ω	0	0.5	0.9	0.95	0.98
Bils and Klenow's data	0.13	0.18	0.69	1.13	1.95

- Our model can explain 100% of the median of volatility if
- $\omega = 0.94$ with Bils and Klenow's data;
- ($\omega = 0.92$ with Nakamura and Steinsson's data.)
- Avg. duration btwn info. updates is 17 and 12 months.

- Conclusion

Conclusion

- 1. The Kehoe and Midrigan's findings are robust to the use of highly disaggregate panel data.
 - Calvo model fails to explain perisistence and volatility of good-level RER.
- 2. One possible explanation is the dual stickiness model.
 - The dual stickiness model solves persistence and volatility puzzles.
 - Implied durations between info. updates are comparable to estimates of previous studies.

- Reconciling monthly models with annual data

Reconciling monthly models with annual data

e.g., the monthly Calvo model with iid money growth:

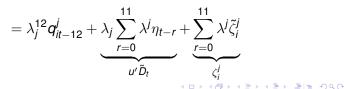
$$\boldsymbol{q}_{it}^{j} = \lambda_{j} \boldsymbol{q}_{it-1}^{j} + \lambda_{j} \eta_{t} + \tilde{\zeta}_{i}^{j}.$$

where η_t : difference between money growth rates of two countries.

Annual transformation

. . .

$$q_{it}^{j} = \lambda_{j}q_{it-1}^{j} + \lambda_{j}\eta_{t} + \tilde{\zeta}_{i}^{j}$$
$$= \lambda_{j}^{2}q_{it-2}^{j} + \lambda_{j}\eta_{t} + \lambda_{j}^{2}\eta_{t-1} + (1+\lambda_{j})\tilde{\zeta}_{i}^{j}$$

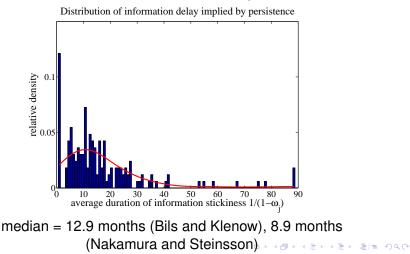


Good-level Real Exchange Rates

- How much should be information stickiness needed?

- Persistence

How much should be information stickiness needed to explain persistence?Good-specific ω_j rather than ω

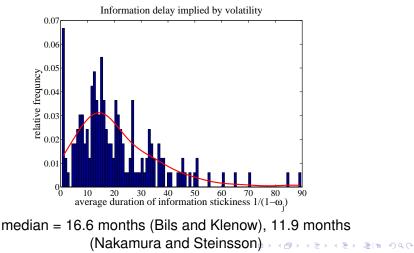


Good-level Real Exchange Rates

- How much should be information stickiness needed?

└- Volatility

How much should be information stickiness needed to explain volatility?Good-specific ω_j rather than ω



Strategic complementarities

KM find pricing complementarities do not help for solving puzzles

- ► KM also consider pricing complementarities.
- Production function of firms

$$y = m^a n^{1-a}, \quad m = \left(\int m_j^{\frac{\theta-1}{\theta}} dj\right)^{\frac{\theta}{\theta-1}}, \quad m_j = \left(\int m_{j,z}^{\frac{\theta-1}{\theta}} dz\right)^{\frac{\theta}{\theta-1}}$$

- Input costs of firms in all good j move together.
- They set an extreme value of a = 0.99. They find....
- The persistence can be explained somewhat better than otherwise.
- The volatility cannot be explained by pricing complementarities.