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Abstract

The ε-contamination has been studied extensively as a convenient
and operational specification of Knightian uncertainty in many eco-
nomic problems including job search. However, it is formulated in a
static environment. When it is applied straightforwardly in a dynamic
and sequential framework with Bayesian updating, the Principle of
Optimality of dynamic programming may not hold true. We then
develop the theory of sequential ε-contamination guaranteeing the ap-
plicability of the Principle, which can be represented by a sequence of
monotonically increasing ε’s that “contaminate” the conditional prin-
cipal belief, or in mathematical terms, probability charge. The se-
quential ε-contamination is shown to be a natural extension of static
ε-contamination as interpreted in the dynamic and sequential frame-
work, since both have the same initial period “view” (ε) of the world.
The sequential ε-contamination is then applied to job search models
and it is shown that job searchers become more likely to accept the
current job offer in the sequential framework with Bayesian updating
than otherwise, which is consistent with empirical evidence.
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1 Introduction

The ε-contamination has been studied extensively as a convenient and opera-
tional specification of Knightian uncertainty. In the ε-contamination frame-
work, the decision-maker is assumed to be (1 − ε) × 100%-certain that she
faces a particular probability charge, which may be called a “principal”
probability charge, but with ε× 100%-fear she feels completely ignorant so
that she may think she faces the worst case.

This concept is applied to analyze the effect of Knightian uncertainty on
the economic agent’s behavior such as search (Nishimura and Ozaki, 2004),
asset pricing (Epstein and Wang, 1994), voting (Chu and Liu, 2002) and
learning (Nishimura and Ozaki, 2017, Chapter 14).1 Also, it has a simple
and intuitive axiomatic foundation (Nishimura and Ozaki, 2006; Kopylov,
2009). The ε-contamination also comes up in the statistics literature on
robustness (for example, see Berger, 1985).

The ε-contamination described above, however, is formulated in a static
environment. Since many economic problems are dynamic and sequential in
nature, we need a dynamic and sequential version of the ε-contamination.
However, when it is applied straightforwardly in a dynamic and sequential
framework, the Principle of Optimality of dynamic programming may not
hold true as demonstrated in an example in Section 2. Thus, we need a more
sophisticated version of ε-contamination in a sequential setting, which guar-
antees applicability of the Principle of Optimality and at the same time has
the same initial period “view” (ε) of the world as the static ε-contamination.
It is well-known (Epstein and Schneider, 2003) that Knightian uncertainty
should exhibit the rectangularity property in order to guarantee time con-
sistency of intertemporal decision-making in the maxmin expected utility
model under Knightian uncertainty (Gilboa and Schmeidler, 1989). Since
time consistency is necessary for the Principle of Optimality, we formulate a
“time-consistent” (or rectangular) dynamic ε-contamination, which we call
sequential ε-contamination.2 In fact, the Principle of Optimality is restored
under sequential ε-contamination in the above-mentioned example of Sec-
tion 2.

There is another issue in the dynamic formulation: updating , or equiva-
lently, conditioning . The issue can be explained by the analogy to updating
under traditional framework of no Knightian uncertainty. Suppose that the

1The continuous-time counterpart of the ε-contamination, developed by Chen and Ep-
stein (2002) and known as the κ-ignorance, is applied to continuous-time dynamic models
with ambiguity, including Chen and Epstein (2002) and Liu (2011) (portfolio choice), and
Nishimura and Ozaki (2007), Miao and Wang (2011), Thijssen (2011) and Flor and Hesel
(2015) (investment choice) among voluminous literature.

2Please note the difference between the boldface “ε” for the sequential ε-contamination
and the non-boldface “ε” used everywhere else. This is because ε appearing in the sequen-
tial ε-contamination turns out to be a sequence of (possibly mutually distinct) numbers
(i.e., ε’s), instead of a mere number.
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decision-maker faces a particular probability charge and that one period has
elapsed. Then, it is quite natural that the decision-maker likes to update
the probability charge by conditioning it on the observation she made in the
past period according to Bayes’ rule. The situation is the same in the case of
Knightian uncertainty, in which the decision-maker faces a set of probability
charges. After one period has elapsed, she may want to update all the prob-
ability charges in the set by conditioning each of them on the observation
she made in the past period, to be left with a new set of updated probabil-
ity charges which forms new Knightian uncertainty. In this paper, we take
this updating procedure which is well-known updating rule for Knightian
uncertainty and is often called “generalized Bayes’ rule.” Interestingly and
importantly, we later prove that the sequential ε-contamination updated by
the generalized Bayes’ rule is again the sequential ε′-contamination with ε′

possibly different from ε.3

The results which are proved in the main body of this paper are re-
markable. The sequential ε-contamination which is equipped with both
generalized Bayesian updating and intertemporal consistency at the same
time can be represented by a monotonically increasing sequence of ε’s that
“contaminate” the conditional “principal” probability charge. Furthermore,
each of these subsequent periods’ ε’s has a simple closed form that is de-
pendent on the initial ε. The degree of contamination, ε, increases in each
period after updating, because (1) updating of the set of probability charges
in question by generalized Bayes’ rule may cause its dilation (that is, an
increase in Knightian uncertainty)4 which in turn may cause time inconsis-
tency of sequential decision if the same ε is kept to be assumed, and thus
(2) to take account of this possibility of time inconsistency and to avoid
it, the decision-maker may change her view of Knighitian uncertainty and
postulate larger uncertainty, that is, she increases her perceived degree of
contamination, ε.

Then, in a practical application to job search, we will find two impli-
cations of the sequential ε-contamination with Bayesian updating. First,
in the multi-period Bayesian updating framework, an increase in the ini-
tial Knightian uncertainty decreases the value of continuing search in the
subsequent periods monotonically. Thus, the worker is increasingly more
likely to accept the current job offer, implying shorter search periods. (See
Proposition 11 in Section 4 for the two-period model and Proposition 18 in

3There may be another approach, in which we might impose axioms on the primal and
all subsequent conditional preferences to derive all of each period’s ε’s. In an important
paper, Kopylov (2016) adopts this approach based on his endogenous characterization of
ε in Kopylov (2009). In his approach, however, updating is rather abstract and we do
not know the relationship between ε before and after observation (i.e., the one between
ε and ε′). Thus, we do not take this approach and instead we start with the single ε in
the initial period since we would like to examine the implications of generalized Bayesian
updating explicitly to the subsequent period’s ε’s.

4See Nishimura and Ozaki (2017, Chapter14).
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Appendix B for the multi-period model.)
Second, the presence of multi-period Knightian uncertainty itself is likely

to decrease reservation wages over time under Bayesian updating and thus
shorten an unemployment spell. (See Proposition 19 of Appendix B) This
implication is consistent with empirical evidence which states that the reser-
vation wage declines over the course of an unemployment spell. (See for
exmple, Brown, Flinn and Schotter, 2011.)5

The organization of the paper is as follows. Section 2 presents a mo-
tivating example of a job search model in which possible shortcomings of
the traditional static, or one-shot ε-contamination are revealed when it is
applied to multi-stage models, which lays the foundation of the sequential ε-
contamination. In Section 3, we define formally sequential ε-contamination
and show that it is rectangular so as to guarantee time consistency in a
two period framework. It also presents basic properties of sequential ε-
contamination. Section 4 applies sequential ε-contamination to the job
search model introduced in the motivating example of Section 2, and ex-
plores its implications in the framework of Bayesian updating. All proofs of
propositions are relegated to Appendix A.

Appendix B contains the extension of the two-period models to T -period
finite-horizon models with arbitrary T , showing that the same mathematical
results as well as the same implications for the job search behavior are also
obtained in longer horizon models.

2 A Motivating Example in Job Search: Principle
of Optimality under Static ε- and Sequential ε-
contamination

This section presents a two-period simple job search model in the presence
of uncertainty. In the way of incorporating uncertainty into the model,
we adopt mutually distinct two different methods. One is to characterize
uncertainty by the ε-contamination in the initial period (the period 0), where
we interpret the single ε as representing the degree of agent’s ignorance
about the whole history of the states over the two periods of the world and
we assume that ε is given exogenously.6 This way of specifying ambiguity
may be called static or one-shot ε-contamination. The other method is the
one which characterizes uncertainty by the ε-contamination which invokes
two (possibly) distinct ε and ε′.

We briefly touched the rough ideas of both in the Introduction, but we
states these two kinds of specification of uncertainty more carefully with

5See p.948 of their paper, and the literature cited in their footnote 1.
6This type of recognition by the agent is axiomatized by Nishimura and Ozaki (2006)

and Kopylov (2009).
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the ε-contamination in Subsection 2.3 and the sequential ε-contamination
in Subsection 2.4.

Furthermore, for each specification of uncertainty, we consider two types
of uncertainty-averse agents: the one-shot minimizer and the multi-stage
minimizer .

The first type of the agent, the one-shot minimizer, is supposed to find
the single minimum among all the possible expectations of the consequences
resultant from her all possible contingent action streams, where the expec-
tations are computed in the period 0, and then she chooses the contingent
action stream that attains that minimum. All these are done once and for
all in the period 0.7

An important restriction imposed on the one-shot minimizer is that while
she may choose any probability charge contained in the time-0 uncertainty
(it may be the static ε-contamination or the sequential ε-contamination)8,
she would have to stick to the identical probability charge when she needed
to invoke the conditional and marginal probability charges during the com-
putational process of reaching the time-0 expectation. In another word, she
are allowed to employ only the single probability charge contained in the
given time-0 uncertainty, when its unconditional or conditional or marginal
form is necessary . It is quite significant to note this difference between the
one-shot minimizer and the multi-state minimizer, to the latter of which we
will now turn.

The second type of agents, the multi-stage minimizer, is supposed to
compute the minimum of the expectations at each decision node of the period
1 of the consequences resultant from her actions available at that node. She
does this after she has observed the period 1’s state and by choosing the
conditional probability charge as far as the conditional should be based on
some probability charge contained in the time-0 uncertainty (it may be the
static ε-contamination or the sequential ε-contamination).9

Then, after all the minimal “conditional” expectations are thus com-
puted in the period 1, the multi-stage minimizer aggregates these minimal
expectations into the overall unconditional minimal expectation in the pe-
riod 0 by means of the “marginal” probability charge. In contrast to the
one-shot minimizer, the marginal used here may come from any probability
charge as far as it is contained in the time-0 uncertainty.

As is apparent from the above procedure, the multi-stage minimizer con-
ducts the act of taking the minimum “backwardly” firstly in the period 1
and secondly in the period 0. Furthermore, during conducting this proce-

7The behavior of this type is consistent with the one of the agent axiomatized by
Nishimura and Ozaki (2006) and Koylov (2009). See the Footnote 6.

8Recall that we are defining the one-shot minimizer for both of two specifications of
uncertainty.

9Recall that we are defining the multi-shot minimizer for both of two specifications of
uncertainty. See the footnote 8.
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dure, the conditionals and marginals can be based on the distinct probability
charges as far as all of them are contained in the time-0 uncertainty.

In the rest of this subsection, we basically show the following observa-
tions:

(1) Under the specification of uncertainty by the static ε-contamination,
the behavior of the one-shot minimizer and that of the multi-stage minimizer
lead to different consequences in the model.

(2) Under the specification of uncertainty by the sequential ε-contamination,
the behavior of the one-shot minimizer and that of the multi-stage minimizer
lead to the completely identical consequence in the model.

Before showing these facts, the next subsection formally describes the
job search model we consider.

2.1 Description of Simple Job Search Model

We assume that there are two periods and both periods are represented
by the identical state space, S, which is composed of the two states, i.e.,
S := {b, s}, where we interpret the state b as representing the “boom” and
the state s as representing the “slump.” Therefore, there are totally four
states in this model: (b, b), (b, s), (s, b) and (s, s), where the first of each pair
is the state in the first period (period 1) and the second of it is the state in
the second period (period 2).

The economic agent of the model is a worker and she is unemployed in
the beginning (period 0). This unemployed worker receives the offer of the
wage in each period (period 1 and period 2) and the offer in each period is
denoted by wt (t = 1, 2). The wage offer is stochastic and it depends solely
on the state when it is offered. The wage offer at a boom is wb and that at
a slump is ws. That is, for each t ∈ {1, 2}, wt = wb if the state in period t is
b, and wt = ws if the state in period t is s. We assume that wb > ws, which
is quite natural to assume given our interpretation of each state.10

If the worker accepts the wage offer which is made in the first period,
she earns that wage in the first period and she will earn the same wage also
in the second period. She is subject to the contract she made in the first
period and cannot renege it even if the second-period wage offer is better.
On the other hand, if she declines the offer in the first period, she receives
unemployed compensation, c > 0, in this period and then continues search
to face a new wage offer randomly drawn in the second period, which she
can either accept or decline again to receive c.

The worker’s lifetime income is the discounted sum of her wage/unemployed
compensation earned over two periods, where she “discounts” the second pe-

10All the assumptions on the parameters of the model, including this one, is summarized
in Subsection 2.1.2.
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riod income by the discount factor β > 0.11 To make the model meaningful
we need to and actually do assume that c < wb because, if otherwise, the
worker would always choose to decline the offer to maximize her lifetime
income as c+ βc.

As an additional ingredient of our model, we introduce the grant-in-aid
paid to the worker by the government only in the case when the economy
is in the slump. It is a fixed money amount, w̄ > 0, given to the worker,
regardless of whether she is employed or unemployed, without any charge
whenever the first-period’s state is s. Importantly, the aid is paid only in
the first period and will last only for one period. The worker won’t get
this aid in the second period even if the second-period’s state is s. In this
regard, the grant-in-aid in this example is quite similar to the one made
by the Japanese government in 2020. The government paid 100,000 yen to
each Japanese citizen only once with the intention of supporting the people
whose everyday lives are suffering from COVID-19 while it is prevalent still
now for more than one year.

Note that the main motivation of introducing the grant-in-aid is to
demonstrate a stark contrast in the consequences resultant from the two
different specifications of uncertainty (that is, (1) and (2) mentioned in the
preamble of this section). The fundamental source of this discrepancy is
the way of specifying uncertainty, not the presence of the grant-in-aid. In
fact, we do not assume such an aid in the application of the sequential ε-
contamination to the job search model analyzed in the main body of this
paper.

2.1.1 The Static ε-Contamination

As we already mentioned, the objective of this section is to illustrate that
the two types of time-0 uncertainty will lead to the different implications in
the job search model described above.

We now define the first type of time-0 uncertainty over the two periods:
the static ε-contamination. We do this firstly because its second type, i.e.,
the sequential ε-contamination, is defined based on it, and secondly because
we like to summarize all the assumptions imposed on the parameters that
appear in the example before we start its formal analyses.

Let p0 be some probability charge12 on S × S, where S = {b, s} as
defined above. We call p0 the principal probability charge. Also, let ε be a
real number such that ε ∈ (0, 1). Then, the static ε-contamination of p0,
denoted

{
p0
}ε
, is defined by{

p0
}ε

:=
{
(1− ε)p0 + εq

∣∣ q is any probability charge on S × S
}
. (1)

11In this finite-horizon model, we need not assume that β < 1. Thus, the worker may
“upcount” the future.

12For the precise definition of the probability charge, see Nishimura and Ozaki (2017).
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We can interpret the static ε-contamination of p0 is a form of uncer-
tainty the decision-maker faces at time 0 such that she believe that the risk
(probability charge) for the next successive periods will be governed by some
specific p0 with (1 − ε) × 100%-conviction, and such that if her conviction
will turns out to be wrong, any probability charge, which might be wildly
different from p0, could be the case.

The maxmin preference à la Gilboa and Schmeidler (1989) with the set
of multi-priors characterized by the the static ε-contamination of p0,

{
p0
}ε
,

was axiomatized by Nishimura and Ozaki (2006) and Kopylov (2009).

2.1.2 The Assumptions on the Parameters Appearing in the Ex-
ample

We are now ready to make a whole list of assumptions imposed on the
parameters that appear in the job search model whose analyses are to be
conducted in this section.

The first group of parametric assumptions are those on the parameters
introduced in the preamble of Subsection 2.1:

c < ws < wb < c+ w̄ and ws + w̄ + βws < wb + βwb . (2)

While some are reasonable to assume and we already mention them, some
are new.

The second group of parametric assumptions are those on the principal
probability charge, p0:

p0({b, b}) = p0({b, s}) = p0({s, b}) = p0({s, s}) = 1

4
. (3)

This is a direct and mainly simplifying assumption without which the com-
putations that follow would be quite messy.

The final group of parametric assumptions are those jointly assumed on
the parameters in the first group and the parameter ε ∈ (0, 1):

(1− 3ε)(wb + βwb) + (1 + ε)(ws + w̄ + βws) > 0

and wb + βwb < c+ w̄ + β

(
1− ε

2(1 + ε)
wb +

1 + 3ε

2(1 + ε)
ws

)
. (4)

Compared with the first two groups of assumptions, this is clearly more
complicated. However, thanks to this, we can show the stark contrast be-
tween the implications derived from two different ways of specifying the
time-0 uncertainty, which we will see in the next two subsections.

There seems to be two mutually distinct approaches to disentangle the
complexity embodied in the third group of assumptions. The first approach
is to decompose the two inequalities into the more simple ones. But here,
we choose the much easier second approach, which simply listed up each of
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the parameters concretely, as a whole of which both assumptions, (2) and
(4), are met.

For instance, setting:

c = 0.9 ; ws = 1 ; wb = 1.6 ; w̄ = 1.1 ; β = 1 ; with ε < 0.2 (5)

meets all the requirements.13

In the rest of this section, we maintain the parametric assumptions, (2),
(3) and (4).

2.2 The Case of Static ε-contamination: The Principle of
Optimality Is Violated

In this subsection, we solve the job search model where the time-0 un-
certainty is specified by the static ε-contamination, firstly by the one-shot
minimization and secondly by the multi-stage minimization, in turn.

We relegate the formal derivation of the intermediate steps for the claims
made in the current and subsequent subsections to the Appendix A.

If we denote the worker’s income for each period by yt (t = 1, 2), the ob-
jective of the unemployed worker is to maximize her lifetime income defined
by

min
p∈{p0}ε

Ep [y1 + βy2] (6)

by choosing her strategy whose nature depends on whether she is the one-
shot minimizer or the multi-stage minimizer. Note that the uncertainty the
worker faces is characterized by the static ε-contamination in the objective
function, (6), where

{
p0
}ε

is defined by (1). The “min” operator in the
forefront of (6) reflects the agent’s uncertainty-aversion.

2.2.1 The One-Shot Minimization

By definition, the one-shot minimizer employs the plans that are contingent
upon the whole history of the states over the two periods. That is, her
strategy depends upon both period 1 and period 2’s states together.

Let us first consider such strategies the agent may choose. There are
four possible histories of states, and there are three possible actions: “stop,”
“continue and then stop,” and “continue and then continue again,” for each
of the four histories. We thus conclude that there is a total of twelve possible
(contingent) strategies available to the agent.

However, some simple reasoning eliminates some irrelevant strategies to
a large extent. First, the first half of the assumption (2) kills the third action
mentioned above. Second, if the state b is realized in the first period, the best

13Because the assumptions, (2) and (4), are stated in the form of the inequalities, the
list of parameters, (5), is “robust” in the sense that the assumptions keep to be satisfied
if we slightly shake the values listed in (5).
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action for the agent is to stop immediately by the first half of the assumption
(2) again, because the grant-in-aid will be never paid in the second period
by definition. In sum, we are left with only the two (contingent) strategies
worth considering: {b → stop ; s → stop} and {b → stop ; s → continue},
in which the state denotes the one in the first period. (Note that the state
realized in the second period does not matter at all because the agent had
already accepted the offer in the first period or if otherwise, she definitely
accepts the second period’s offer regardless of the realized state then.)

Our next task is to compare the agent’s minimal expected lifetime in-
comes, (6), each of which is computed by each of the two strategies men-
tioned above.

{b → stop ; s → stop}. If the state in the first period were b, her lifetime
income would be

wb + βwb . (7)

On the other hand, if the state in the first period were s, her lifetime income
would be

ws + w̄ + βws . (8)

Because (7) > (8) by the second half of the assumption (2), her minimal
expected lifetime income, (6), turns out to be

1− ε

2
(wb + βwb) +

1 + ε

2
(ws + w̄ + βws) , (9)

where the “worst” weight on (7) and the “best” weight on (8), which should
be chosen from

{
p0
}ε

so as to minimize the expected lifetime income, are
found by setting, say, q := (0, 0, 1/2, 1/2) in (1).14

{b → stop ; s → continue}. If the state in the first period were b,
her lifetime income would be determined by (7) as above. If otherwise, it
depends also on the state which will be realized in the second period. While
her lifetime income will be c+ w̄+ βwb when the second-period’s state is b,
it will be c+w̄+βws when the second-period’s state is s. Thus, her minimal
expected lifetime income turns out to be the weighted sum of three levels of
the lifetime incomes:

1− ε

2
(wb + βwb) +

1− ε

4
(c+ w̄ + βwb) +

1 + 3ε

4
(c+ w̄ + βws)

=
1− ε

2
(wb + βwb) +

1 + ε

2
(c+ w̄) + β

(
1− ε

4
wb +

1 + 3ε

4
ws

)
. (10)

14The first co-ordinate of q, i.e., 0, denotes the wight on the history, (b, b), because the
wight by q has no restriction except that the sum of weights must be unity. See (1). The
co-ordinate of q is listed by the same order as that of the histories indicated in (3). The
same convention applies also elsewhere.
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Here, in order to minimize the expected lifetime income, the “worst”
weight in

{
p0
}ε
, (1 − ε)/4, should be put on the best lifetime income; the

“best” weight in
{
p0
}ε
, (1 + 3ε)/4, should be put on the worst lifetime

income; and the remaining weight, (1 − ε)/2, which is determine by the
fact that the weights sum up to unity, should be put on the middle lifetime
income, where the rank of the lifetime incomes follows from the second
half of the assumption (2). The weights above are corresponding to setting
q := (0, 0, 0, 1) in (1).

Finally, the agent decides which strategy to choose by comparing (9) with
(10), and it turns out to be (9) < (10) holds. (See A.1 in the Appendix A.)
Thus, the one-shot minimizing worker chooses the second strategy described
by {b → stop ; s → continue}.

We call the maximized minimal (that is, maxmin) expected lifetime in-
come for the one-shot-minimizing worker, where the maximum is achieved
by her appropriate state-contingent strategy, as the value of the job search
and denote it by V0. We state the result obtained so far in the form of the
proposition below:

Proposition 1 (Static ε-Cont. + One-Shot Min.) The value of the job
search, V0, is given by (10):

V0 =
1− ε

2
(wb + βwb) +

1 + ε

2
(c+ w̄) + β

(
1− ε

4
wb +

1 + 3ε

4
ws

)
,

which is attained by the worker’s choosing “to stop” if the first period’s state
is b and by choosing “to continue” if it is s (and then choosing “to stop” in
the second period).

2.2.2 The Multi-Stage Minimization

This subsection illustrates how to solve the job search model if the worker
is a multi-stage minimizer introduced in the preamble of this section.

According to the definition of the multi-stage minimization, we assume
both the agent’s belief-updating by Bayes’ rule and her stage-by-stage min-
imization, where the second-stage minimization is conducted among her
conditional beliefs.

Assuming this, we will solve the problem in a backward induction method.
The worker can thus select the “worst” conditionals independently at each
decision node, each of which is derived from some (not necessarily the same)
probability charge as far as such a charge is contained in the given static
ε-contamination of p0,

{
p0
}ε
.

The worker of this type likes to maximize:

min
α

[
αmax

{
wb + βwb , c+ βmin

α′

[
α′wb + (1− α′)ws

]}
11



+ (1− α)max

{
ws + w̄ + βws , c+ w̄ + βmin

α′′

[
α′′wb + (1− α′′)ws

]}]
.

(11)

Here, each term inside the first braces denotes the agent’s “pessimistic”
lifetime income when she chooses to “stop” or to “continue,” respectively,
after knowing that the first-period’s state is b, and each term inside the
second braces denotes the agent’s “pessimistic” lifetime income when she
does so after knowing that the first-period’s state is s.15 The “pessimism”
is represented by the “min” operators there which are indicating the mini-
mum second-period (current) incomes computed by means of the conditional
beliefs.

In (11), we assume that, quite differently from the one-shot minimizer
in the previous subsection, α (the marginal probability charge for the first
period), and α′ and α′′ (the conditional probability charges for the second
period when the first-period’s state is b or s, respectively) may be based upon
mutually distinct three probability charges as far as all of three charges are
contained in the given static ε-contamination of p0,

{
p0
}ε
.

Finally, each “max” operator in (11) indicates the maximum lifetime
income computed in the first period given the first-period’s state, b or s, and
the “min” operator in the head of (11) indicates the overall lifetime income
computed by the agent “pessimistically” before the first period begins.

We now tackle with the problem by backward induction. Suppose that
the worker is in the end of the first period just after she observed the state
b. Because wb > ws by (2), the “worst” value of α′ turns out to be (1 −
ε)/2(1 + ε), which is derived by setting q = q′ := (0, 1, 0, 0) in (1).16

Similarly, suppose that the worker is in the end of the first period just
after she observed the state s. Then, by the same logic as above, the “worst”
value of α′′ turns out to be (1 − ε)/2(1 + ε), which is derived by setting
q = q′′ := (0, 0, 0, 1) in (1). (See the Footnote 16.)

By substituting these values of α′ and α′′, (11) is now reduced to

min
α

[
αmax

{
wb + βwb , c+ β

(
1− ε

2(1 + ε)
wb +

1 + 3ε

2(1 + ε)
ws

)}
+(1−α)max

{
ws + w̄ + βws , c+ w̄ + β

(
1− ε

2(1 + ε)
wb +

1 + 3ε

2(1 + ε)
ws

)}]
.

(12)
15Recall that the agent always stops in the second period by the maintained assumption,

(2).
16In order to find q′, seek for p = (p1, p2, p3, p4) ∈

{
p0
}ε

such that p1/(p1 + p2) (the
conditional charge of b given b in the first period) will be minimized, where p1 := p({b, b}),
and so on, according to the order of the state’s histories listed in (3). The minimum
must be achieved by some p ∈

{
p0
}ε

and such a minimizing p turns out to be p =
((1− ε)/4, (1− ε)/4 + ε, (1− ε)/4, (1− ε)/4), which corresponds to q defined by q′ :=
(0, 1, 0, 0), and the weight on wb appearing in the first line of (12) must be (1−ε)/2(1+ε).
The similar reasoning applies to the derivation of q′′ in the next paragraph.
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By solving the two maximization problems contained in (12) under the
maintained assumptions, we can show that the formula (12) is equal to

min
α

[
α (wb + βwb) ,

(1− α)

(
c+ w̄ + β

(
1− ε

2(1 + ε)
wb +

1 + 3ε

2(1 + ε)
ws

))]
(13)

(see A.2 in the Appendix A).
Finally, by the second inequality of the assumption (4), we know that

the minimum in (13) can be achieved when α is maximized. If we recall
that α is the first-period marginal of any probability charge contained in{
p0
}ε
, such an α turns out to be (1+ ε)/2, which is derived by setting, say,

q = (1/2, 1/2, 0, 0) (and thus 1− α should be (1− ε)/2, which is derived by
setting, say, q = (0, 0, 1/2, 1/2)).

If we denote by V ′
0 the value of the job search for the multi-stage mini-

mizer, what we have established so far is summarized by the next proposi-
tion.

Proposition 2 (Static ε-Cont. + Multi-Stage Min.) The value of the
job search, V ′

0, is given by:

V ′
0 =

1 + ε

2
(wb + βwb) +

1− ε

2

[
c+ w̄ + β

(
1− ε

2(1 + ε)
wb +

1 + 3ε

2(1 + ε)
ws

)]

=
1 + ε

2
(wb + βwb)

+
1− ε

2
(c+ w̄) + β

(
(1− ε)2

4(1 + ε)
wb +

(1− ε)(1 + 3ε)

4(1 + ε)
ws

)
, (14)

which is attained by the worker’s choosing “to stop” if the first period’s state
is b and by choosing “to continue” if it is s (and then choosing “to stop” in
the second period).

Comparing Propositions 1 and 2 shows that, when the time-0 uncer-
tainty is specified by the static ε-contamination, the value of the job search
varies depending on whether the worker takes the one-shot minimization or
the multi-stage minimization, while the worker’s best strategy is the same
between the two types of her behaviors. Thus, the principle of optimality is
violated for the two-period job search model with the static ε-contamination
considered in this subsection.

This happens because of two reasons: (1) there exists uncertainty, that is,
ε > 0; (2) the static ε-contamination is not the way of specifying the time-
0 uncertainty that guarantees the time-consistent behavior of the worker.
This is one of our chief concerns which motivate us to write this paper, and
we discuss this issue in more detail later in this section.
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2.3 The Case of Sequential ε-contamination: The Principle
of Optimality Is Restored

In this subsection, we solve the job search model where the time-0 uncer-
tainty is specified by the sequential ε-contamination, firstly by the one-shot
minimization and secondly by the multi-stage minimization, in turn, accord-
ing to the manner we employed in the previous subsection.

First of all, however, we need to define the sequential ε-contamination.
Let ε ∈ (0, 1) be the one which is used in the definition of the static ε-
contamination, (1). We then define a series of real numbers by:

ε := −ε

2
; ε̄ :=

ε

2
; ε′ := − ε

1 + ε
and ε̄′ :=

ε

1 + ε
. (15)

We use these “bounds” to define the sequential ε-contamination of p0, de-
noted

{
p0
}seqε

, by

{
p0
}seqε

:=

{(
1

2
+ εi

)
·
(
1

2
+ ε′ij

)
i= b, s
j= b, s

∣∣∣∣∣
(∀i = b, s) εi ∈ [ε, ε̄]; εb + εs = 0;

(∀i = b, s)(∀j = b, s) ε′ij ∈ [ε′, ε̄′] and (∀i = b, s) ε′ib + ε′is = 0

}
. (16)

Here, the dot (“ · ”) in the first line simply denotes the product of two
numbers, and it should be understood as that of the first-period’s “marginal”
and the second-period’s “conditional.”

Also, for each i and j, εi and ε′ij may vary within the range defined by

the “bounds,” (15), which makes
{
p0
}seqε

a set of probability charges on
S × S, rather than a single probability charge.

Note that the definition of the sequential ε-contamination given by (16)
is the one adapted for the example of this section. Presenting both its
general definition and an intuition behind it will be deferred until the next
section.

2.3.1 The One-Shot Minimization

This subsection illustrates how to solve the job search model if the worker
is a one-shot minimizer when the time-0 uncertainty is specified by the
sequential ε-contamination introduced above.

By the same logic as Subsection 2.2.1, it suffices to consider only two
strategies: {b → stop ; s → stop} and {b → stop ; s → continue}.

{b → stop ; s → stop}. Under this strategy, the lifetime income would
be wb + βwb whenever the first-period’s state were b; and it would be ws +
w̄ + βws whenever it is s. In order to minimize the weighted sum of these

14



two lifetime incomes by choosing the wights from among the sequential ε-
contamination, we need to find the minimal first-period marginals for b, and
the maximal first-period’s marginal for s, subject to the constraints imposed
by the definition of the sequential ε-contamination, because wb + βwb >
ws + w̄ + βws by the second half of the assumption (2).

Such marginals can be found immediately and thus the worker’s minimal
expected lifetime income given this strategy turns out to be

1− ε

2
(wb + βwb) +

1 + ε

2
(ws + w̄ + βws) . (17)

{b → stop ; s → continue}. Given this strategy, the worker’s lifetime
income takes three possible values depending on the states’ whole history:
(i) wb + βwb (taking place both at (b, b) and (b, s) and being the second
largest among three); (ii) c+ w̄ + βwb (taking place at (s, b) and being the
largest among three); and (iii) c+ w̄+ βws (taking place at (s, s) and being
the smallest among three). Here, the relative magnitude among the three
lifetime incomes is derived form the assumption (2).

Our task is to find the wights on (i), (ii) and (iii) so as to minimize
the expected lifetime income, subject to the constraints that the wights are
consistent with the sequential ε-contamination,

{
p0
}seqε

. We do this task
in the Appendix (see A.3 in the Appendix A), and as a result, we obtain
the minimal expected lifetime income given this strategy below:

1 + ε

2
(wb + βwb) +

(1− ε)2

4(1 + ε)
(c+ w̄ + βwb)

+
(1− ε)(1 + 3ε)

4(1 + ε)
(c+ w̄ + βws)

=
1 + ε

2
(wb + βwb)

+
1− ε

2
(c+ w̄) + β

(
(1− ε)2

4(1 + ε)
wb +

(1− ε)(1 + 3ε)

4(1 + ε)
ws

)
. (18)

Finally, the agent decides which strategy to apply by comparing (17)
with (18). The Appendix A shows that the latter is larger than the former
(see A.4 in the Appendix A), and thus we have proved the next proposition,
where V ′′

0 denotes the value of the job search in the current context.

Proposition 3 (Seq. ε-Cont. + One-Shot Min.) The value of the job
search by the one-shot minimizer is given by (18):

V ′′
0 =

1 + ε

2
(wb + βwb)

15



+
1− ε

2
(c+ w̄) + β

(
(1− ε)2

4(1 + ε)
wb +

(1− ε)(1 + 3ε)

4(1 + ε)
ws

)
,

which is attained by the worker’s choosing “to stop” if the first period’s state
is b and by choosing “to continue” if it is s (and then choosing “to stop” in
the second period).

We close the sub-subsection with some remarks. The “worst” weight in
(18), (1− ε)2

/
(4(1+ε)), attached to the largest lifetime income, c+w̄+βwb,

is not contained in the static ε-contamination,
{
p0
}ε
, because it is always

true that
(1− ε)2

4(1 + ε)
<

1− ε

4

as far as ε ∈ (0, 1), where the right-hand side is the “worst” weight available
in
{
p0
}ε
.

On the other hand, the “best” weight available in
{
p0
}seqε

for the small-
est lifetime income, c+ w̄ + βws, would be17(

1

2
+

ε

2

)
·
(
1

2
+

ε

1 + ε

)
=

1 + 3ε

4
,

which is also in
{
p0
}ε
.

All of these suggest that while
{
p0
}seqε

dilates
{
p0
}ε

properly (which
we will prove formally in the later section), the dilation may take place only
downward .

2.3.2 The Multi-Stage Minimization

With uncertainty specified by means of
{
p0
}seqε

, instead of
{
p0
}ε
, the multi-

stage minimizer will maximize:

min
α∈[ 1

2
+ε, 1

2
+ε̄ ]

[
αmax

{
wb + βwb , c+ β min

α′∈[ 1
2
+ε′, 1

2
+ε̄′]

[
α′wb + (1− α′)ws

]}

+ (1− α)max

{
ws + w̄ + βws ,

c+ w̄ + β min
α′′∈[ 1

2
+ε′, 1

2
+ε̄′ ]

[
α′′wb + (1− α′′)ws

]}]
, (19)

Here, we explicitly invoked both the definition (16) of
{
p0
}seqε

and the
definition (15) for its bounds. Importantly, the formula (19) shows that
the multi-stage minimizer solves the involved minimization problems “back-
wardly.”

17This weight, however, is not employed in (18), in purpose of achieving the overall
minimum.
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Solving the first maximization problem and the two minimization prob-
lems in the brackets and substituting the bounds for the conditionals with
the help of the first half of the assumption (2) simplifies the inside of the
brackets to show that the formula (19) is equivalent to

min
α∈[ 1

2
+ε, 1

2
+ε̄ ]

[
α (wb + βwb) + (1− α)max

{
ws + w̄ + βws ,

c+ w̄ + β

(
1− ε

2(1 + ε)
wb +

1 + 3ε

2(1 + ε)
ws

)}]
. (20)

Furthermore, solving the remaining optimization problems, substituting
the bounds for the marginals, and the second halves of both the assumptions
(2) and (4) show that (20) is equivalent to

1 + ε

2
(wb + βwb) +

1− ε

2

(
c+ w̄ + β

(
1− ε

2(1 + ε)
wb +

1 + 3ε

2(1 + ε)
ws

))
=

1 + ε

2
(wb + βwb)

+
1− ε

2
(c+ w̄) + β

(
(1− ε)2

4(1 + ε)
wb +

(1− ε)(1 + 3ε)

4(1 + ε)
ws

)
. (21)

In sum, we have proved

Proposition 4 (Seq. ε-Cont. + Multi-Stage Min.) The value of the job
search by the multi-stage minimizer, V ′′′

0 , is given by (21):

V ′′′
0 =

1 + ε

2
(wb + βwb)

+
1− ε

2
(c+ w̄) + β

(
(1− ε)2

4(1 + ε)
wb +

(1− ε)(1 + 3ε)

4(1 + ε)
ws

)
,

which is attained by the worker’s choosing “to stop” if the first period’s state
is b and by choosing “to continue” if it is s (and then choosing “to stop” in
the second period).

2.4 Discussion: Updating and Increased Uncertainty

In this section, we presented the two ways of specifying the time-0 uncer-
tainty: the static ε-contamination and the sequential ε-contamination, and
then we applied these concepts to the simple job search model. The result
is summarized by the four propositions we have shown so far (Propositions
1, 2, 3, and 4).

Both Propositions 1 and 2 assume the static ε-contamination, but each
considers the different type of agent: the one-shot minimizer and the multi-
stage minimizer. Here, the former type of agent takes the minimization
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once and for all at time 0 and the latter takes it piece by piece backwardly,
though both types can choose appropriate beliefs from among the common
set of the joint probability charges over the two periods. Then, the two
propositions indicate clear distinction between the consequences implied by
the behaviors of these two types of agent: the value of the job search are
different between the two types.

Next, Propositions 3 and 4 assume the sequential ε-contamination and
repeat the same exercise. In particular, both types can choose appropriate
beliefs from among the common set of the joint probability charges. How-
ever, these propositions highlight the stark contrast between the results of
these propositions and those of Propositions 1 and 2. That is, the values of
the job search are completely the same between the two types of agent in
Propositions 3, and 4!

In the terminology for dynamic models where sequential decision-making
may be permitted, the situation where both the one-shot minimization and
the multi-stage minimization lead to the same consequence (the same value
and the same optimal strategy) is named time-consistent , or satisfying Bell-
man’s principle of optimality.18 Given this terminology, we can say that
Propositions 3 and 4 show that the job search model with the time-0 uncer-
tainty specified by the sequential ε-contamination considered in this section
is time-consistent, while Propositions 3 and 4 show that the one with the
time-0 uncertainty specified by the static ε-contamination is not , that is, it
is time-inconsistent.

In the dynamic context, the time-consistency is quite often regarded as
a desired property the model should possess basically by the following two
reasons: rationality and operational convenience.

Rationality . The time-inconsistency means that the value found by the
backward induction disagrees with the value that can be achieved by ap-
plying some contingent plan once and for all, which is the plan made at
time 0 by taking all possible contingencies into consideration. Furthermore,
any value attained by such contingent plan is always at least weakly dom-
inated by the backwardly-found value because any contingent plan can be
available or mimicked also by the backward induction. All of these indicate
that the one-shot minimizer should have a strong incentive to revise the
plan shaped by herself at time 0 as time goes by. The one-shot minimizer
thus deserves to be named not to be rational, or to be irrational because
she employs the contingent plan regardless of her knowing she will revise
that plan in the next period.19 The cause of this irrationality rests with the

18Mathematically speaking, Bellman’s principle of optimality holds if both so-called
Bellman’s equation derived from the model under investigation has a unique fixed point
and this fixed point coincides with the value of the model. In most cases, however, both
“time-consistency” and ‘’Bellman’s principle of optimality” are used interchangeably. We,
too, do so here.

19Recall the way of us solving the job search models by a backward induction in the
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time-inconsistency with which the model with the static ε-contamination is
endowed.20

Operational convenience. Thanks to the coincidence between the one-
shot and multi-stage minimization in the time-consistent model, we can
choose whichever is easier for solving the problem. In the one-shot mini-
mization, the agent has to seek for the best contingent plan at time 0. In
other words, this search must be conducted in the set of stochastic pro-
cesses, which set can be easily quite complicated, in particular, when the
state space is large and the time-horizon is lengthy. On the other hand, in
the multi-stage minimization, the whole problem can be decomposed into
some sub-problems, each of which has a much lower dimension of the set of
available plans and is much easier to solve because of this lower dimension
of the sub-problem. It takes the form of backward induction in the context
of a dynamic model, which is widely known as the dynamic programming
method. To see how the backward induction makes it easy to solve the
problem, it should be enough to recall the proofs of Propositions 2 and 4,
and compare them to those of Propositions 1 and 3.

With that being said, for the dynamic model with uncertainty like the
job search model considered in this section, we conclude that it is appropriate
to specify the time-0 uncertainty by the sequential ε-contamination because
of its time-consistent property.

It is well-known that if the uncertainty is reduced to the risk , that is,
when the set of probability charges representing the worker’s belief is a
singleton, and if the objective function is time-separable like the lifetime in-
come of the job search model in this section, then the model is automatically
time-consistent.

On the other hand, if the uncertainty is given by not the risk but the
ambiguity , which is characterized by the set of probability charges, it is
not always the case as the static ε-contamination typically shows. (See
Propositions 1 and 2.)

Epstein and Schneider proved, in their important article (2003), that
dynamic models with the ambiguity (as well as the time-separable objective
function) combined with the maxmin preference à la Gilboa and Schmeidler
(1989) exhibit the time-consistency if the ambiguity satisfies some prop-
erty which they call rectangularity . In their terminology, we have shown
so far that the sequential ε-contamination is rectangular, while the static
ε-contamination is not .

In the rest of this subsection, we scrutinize the reason why the sequential
ε-contamination is rectangular in view of the updating of beliefs as well as
the dilation of uncertainty.

former subsections.
20For the time-inconsistent model, it is customary to solve it as the one of finding Nash

equilibria with multiple players, each of which is the same individual indexed by a different
date. Such model is known as a game with multiple-selves.
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2.4.1 Why Is the Sequential ε-Contamination Rectangular?

Let us first focus on the worker’s updating behavior on her beliefs. Note
that the worker’s each belief over the two periods represented by the joint
probability capacity in the relevant set is updated in a Bayesian manner
both in the one-shot and multi-stage minimization. That is, her each be-
lief is updated by Bayes’ rule upon observing the first-period’s state, for
the purpose of deriving the conditional probability charge to calculate the
second-period’s conditional income in both minimization schemes. In this
sense, the updating plays an essential role for the truly dynamic model we
consider in this paper.

The significant difference between the one-shot and multi-stage mini-
mization, then, exists in the fact that each available conditional probability
charge used for the calculating the second-period’s conditional income must
be derived by the same joint probability charge as that whose first-period’s
marginal probability charge served to calculate the first-period’s marginal
income along some two-period’s state history in the one-shot minimization,
while the multi-stage minimization is free from such restriction.

In the model considered in this section, the optimal strategy for the one-
shot-minimizing agent and for the multi-stage-minimizing agent are com-
mon: Stop the search upon observing b in the first period, but continue it
upon observing s in the same period. However, the value function for the
former agent, V0, is given by (10) and that for the latter agent, V ′

0 , is given
by (14), and they are obviously different from each other.

This fact starkly exhibits that the behavior of each type of agents does
not generate the same consequences in a given dynamic economic model.
In another word, the method by finding the best stochastic process among
many such processes and the method of backward induction do not coincide
in general.

More generally, the source of this distinction between the two types is
the presence of ambiguity , that is, the multiplicity of the agent’s beliefs
represented by the set of probability charges. This is easy to see if we
realize that the minimization in each problem (in particular, the one after
observing the first-period’s state in the multi-stage-minimization problem)
is vacuous as well as the law of iterated expectations holds true under risk,
that is, when the set of agent’s beliefs is a singleton.

Therefore, if ambiguity is reduced to the risk, the distinction between the
two types of the behavior vanishes. Such a case is called as a time-consistent
situation, which is quite common in the dynamic economic models because of
its mathematical tractability, in particular, because the backward induction
and the dynamic programming methods can be invoked.

It is well-known that even in the presence of ambiguity, a version of the
law of iterated expectations holds true under the assumption of rectangu-
larity , which was developed by Epstein and Schneider (2003). That is, the
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rectangular ambiguity guarantees that the one-shot minimization and the
multi-stage minimization should coincide. (The more detailed discussion will
be deferred until later. See, in particular, Proposition 5 in Subsection 3.2.)
The one-shot- or multi-stage-minimizing behavior with rectangular ambigu-
ity thus corresponds exactly to a recursive version of the maxmin preference
by Gilboa and Schmeidler (1989) when it is extended to a temporal context.

The disparity of the implications derived from the two types of the behav-
ior shown in the previous two subsections tersely reveals that the one-shot
ε-contamination defined by (1) is not rectangular. One of the main motiva-
tions of the current paper is to develop and study a rectangular version of
the one-shot ε-contamination, which we will call sequential ε-contamination.

The two propositions presented in the previous two sub-subsections show
that, with the sequential ε-contamination, apparently mutually distinct meth-
ods lead to the same solution, we know which must be the case because the
sequential ε-contamination is rectangular (from the results formally proven
in the later section).

On the contrary, in Subsections 2.2 and 2.2.2, the “value functions”
which are contradicting each other neatly show that the backward induction
method is solving some problem which is irrelevant to the original problem.
Intuitively, this happens because the backward induction method fail to
pick up the correct “worst” probability charge in evaluating the best lifetime
income (so as to minimize the over-all lifetime income). In fact, the backward
induction method picks up “too” worst probability charge, which is not
included by the one-shot ε-contamination. This is the source of the disparity
observed in the case of the one-shot ε-contamination and it disappears if
we replace the one-shot ε-contamination by the sequential ε-contamination,
which dilates the former and makes it rectangular.

Such a dilation takes place typically in the region containing small prob-
ability charges. (See the end of sub-subsection 2.3.1.) We thus add the
grant-in-aid into the model by making a “bad” income into a “good” in-
come. By this trick, the worst probability charges would become quite
relevant and the dilation do matter in order to show clear disparity between
one-shot and multi-stage minimization. Without the grant-in-aid as it is in
the model, even in the scheme of the one-shot ε-contamination the disparity
between the two solution methods would vanish.

3 Rectangularity and Sequential ε-Contamination
over Two Periods

The rectangularity is a concept developed by Epstein and Schneider (2003).
After giving an overview of this concept and its basic properties, this section
proposes a version of the one-shot ε-contamination that is rectangular, which
we call sequential ε-contamination. We then derive its important properties
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in the rest of this subsection.

3.1 Some Notations and Definitions

The following notations draw on Chapter 14 of Nishimura and Ozaki (2017)
at the outset, and then, they will be further simplified for the later use in
this paper.

Let S be a state space for each single period and let Ω := S × S be the
whole state space. A generic element of Ω is denoted by (s1, s2). In the main
text of the paper, we exclusively consider the two-period model. Appendix
B extends it to an arbitrarily finite horizon models.

The information structure, which represents the basis of the decision-
maker’s view of the world, is exogenously given by a filtration F := ⟨Ft⟩t=0,1,2.
Let m,n ≥ 2 and let ⟨Ei⟩mi=1 and ⟨Fj⟩nj=1 be two finite partitions of S.
Throughout this section, we fix these two partitions. We assume that F1 is
represented by a finite partition of Ω of the form: ⟨Ei × S⟩i, and that F2 is
represented by a finite partition of Ω of the form: ⟨Ei × Fj⟩i,j .

We abuse a notation by using a partition also to denote the algebra
generated by that partition on S and Ω. By this convention, F1 and F2 are
the algebras on Ω and it holds that F0 ⊆ F1 ⊆ F2, where F0 := {ϕ,Ω}.
Thus, information increases as time goes by.

We now turn to notations for probability charges. Let M (Ω,Fi) be the
space of all probability charges on the measurable space (Ω,Fi) (i = 1, 2).

Given p ∈ M (Ω,F2), we denote by p|1 its restriction on (Ω,F1). Al-
though p|1 is formally a charge on Ω, it can be naturally regarded as the
one on the measurable space, (S, ⟨Ei⟩i), and in that case, p|1(·) = p(· × S).
Thus viewed, p|1 can be considered as the first-period marginal probability
charge of p. We henceforth write p|1(Ei) simply as pi for all i ≤ m.

Given p ∈ M (Ω,F2), i ≤ m and Ei satisfying p(Ei × S) > 0, we denote
by p|Ei(·) the “posterior” probability charge on (S, ⟨Fj⟩j) conditional on
the occurrence of Ei × S. Here, the adjective “posterior” signifies the fact
that this is a probability charge the decision-maker obtains after she made
an observation, Ei, in the first period (and when she updates based on it
according to Bayes’ rule). That is, (∀i, j) p|Ei(Fj) := p(Ei × Fj)/p(Ei × S).
With the conventional wording, we henceforth write p|Ei(Fj) simply as pij
for all i ≤ m and j ≤ n. In a plain English, pij is the conditional probability
charge of Fj given Ei.

Finally, given p ∈ M (Ω,F2), we henceforth write the joint probability
charge p(Ei×Fj) simply as pi,j for all i ≤ m and j ≤ n. Note that regardless
of similar notations between pij and pi,j , their meanings are quite different.
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3.1.1 The Decomposition of a Probability Charge

So far, we have defined three real numbers: pi, pij , and pi,j , for each p ∈
M (Ω,F2) and each i ≤ m and j ≤ n.

By means of all notations introduced thus far, an important result called
the “decomposition of a probability charge into its marginal and conditional”
can be stated as follows: Given any probability charge p ∈ M (Ω,F2), p can
be written as

(∀i, j) pi,j = pi · pij (22)

as far as p(Ei × S) > 0.
Conversely, given any list (vector) of first-period marginals of p ∈ M (Ω,F2)

(where each marginal is identified with an element of M (S, ⟨Ei⟩i)), (pi)i :=
(p1, p2, . . . , pm), as well as any set of lists (vectors) of well-defined condition-
als (where any element of the set is similarly identified with an elements of
M (S, ⟨Fj⟩j)),

{(pij)j}i := {(p11, p12, . . . , p1n), (p21, p22, . . . , p2n), . . . , (pm1, pm2, . . . , pmn)} ,

the right-hand side of Equation (22) “defines” a probability charge p ∈
M (Ω,F2) with i and j varying.

This decomposition (that is, Equation (22)) will be used repeatedly in
what follows. In particular, one of significant implications of Equation (22)
is the law of iterated expectations:

Ep [u1 + u2] = Ep|1
[
u1 + Ep|E [u2]

]
, (23)

where u1 is a real-valued F1-measurable function, u2 is a real-valued F2-
measurable function, E is an arbitrary element of the partition, ⟨Ei⟩i, and
Ep is the mathematical expectation with respect to a relevant probability
charge of p.

3.1.2 The Formal Definition of the One-Shot ε-Contamination

We now formally define the one-shot ε-contamination by means of the no-
tations introduced thus far. (Recall that it was already defined “loosely” by
Equation (1)).

Let p0 be a probability charge on (Ω,F2) such that (∀i) p0i > 0, and let
ε ∈ (0, 1). As we already suggested, the probability charge p0 may be called
as a “principal” probability charge, which the agent believes to be the true
probability charge with the ((1− ε)× 100)% conviction. When the agent’s
conviction were wrong, she would have completely no idea about the true
probability charge that governs the world.

Then, the one-shot ε-contamination of p0, denoted by
{
p0
}ε
, is defined

by {
p0
}ε

:=
{
(1− ε)p0 + εq

∣∣ q ∈ M (Ω,F2)
}
. (24)
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We nowmove to the maxmin preference with the one-shot ε-contamination.
The maxmin preference with a general set of probability charges was axiom-
atized by Gilboa and Schmeidler (1989) and the one with the set specified
by the one-shot ε-contamination was axiomatized by Nishimura and Ozaki
(2006). Both maxmin preferences represent the agent’s pessimistic attitude
toward ambiguity. i

Let ui denote an arbitrary real-valued Fi-measurable function on Ω (i =
1, 2). Here, we interpret u1 as an agent’s felicity function in period 1 and u2
as her (present-valued) felicity function in period 2, and thus, her lifetime
(stochastic) utility is given by u1 + u2. Then, the maxmin expected utility
with

{
p0
}ε

is defined by

min
p∈{p0}ε

Ep [u1 + u2] , (25)

where Ep denotes the standard mathematical expectation with respect to a
probability charge p. ((25) would be basically the same as (6) if we under-
stand that the current-valued felicity function here would happen to be a
common affine function of money with a positive coefficient.)

3.2 Knightian Uncertainty and Its Rectangularity

Any nonempty subset P of M (Ω,F2) is called Knightian uncertainty or
ambiguity . The one-shot ε-contamination introduced above is an example
of Knightian uncertainty.

Given Knightian uncertainty P, its first-period marginal Knightian un-
certainty , denoted by P|1, is the nonempty subset of M (S, ⟨Ei⟩i) that is
defined by

P|1 := { p|1 | p ∈ P } ,

where p|1 is the first-period marginal probability charge of p defined in the
previous subsection and it is written in the conventional wording so that
p|1 ∈ M (S, ⟨Ei⟩i).

Next, let P be Knightian uncertainty, suppose that E ∈ ⟨Ei⟩i was ob-
served in the first period, and suppose that every probability charge in P
is updated given E by Bayes’ rule. As a result of this procedure, we obtain
P|E ⊆ M (S, ⟨Fj⟩j) which is defined by

P|E := { p|E | p ∈ P } ,

where p|E is the “posterior” or conditional probability charge defined in
the previous subsection. Note that P|E = ϕGB(P, E) by the notation of
Nishimura and Ozaki (2017, Chapter 14), where “GB” abbreviates “gener-
alized Bayes.” The set P|E may be thought of as the state of uncertainty
in the second period after the observation E was made in the first period.
We may call P|E the conditional Knightian uncertainty given E in the first
period.
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Knightian uncertainty P is rectangular by definition if for any p′, p′′ ∈
P, it holds that (p′i · p′′ij)i,j ∈ P, where p′ is decomposed into (∀i, j) p′i,j =
p′i · p′ij ; p′′ is decomposed into (∀i, j) p′′i,j = p′′i · p′′ij ; and (p′i · p′′ij)i,j defines
a joint probability charge in M (Ω,F2) by Equation (22). The concept of
rectangularity was introduced by Epstein and Schneider (2003).

One of the novelties of the rectangularity is that a version of the “law of
iterated expectations” (see (23)) for the minimum expectations with Knigh-
tian uncertainty holds when it is rectangular. In the terminology of Section
2, the objective function of the one-shot minimizer and that of multi-stage
minimizer coincides, and hence, the problem for the one-shot minimizer can
be solved by the method of the backward induction. The problem of the
time-inconsistency does not arise when the rectangularity is satisfied, which
brings about the extreme operational convenience for economic applications.

Proposition 5 Let P be a weak ∗compact subset of M (Ω,F2). Then, both
P|1 and P|E are also weak ∗compact. Thus, all the minima in (26) below
exist. Furthermore, if P is rectangular, we have

min
p∈P

Ep [u1 + u2] = min
p′∈P|1

Ep′
[
u1 + min

p′′∈P|E
Ep′′ [u2]

]
, (26)

where ui is an arbitrary real-valued Fi-measurable function on Ω (i = 1, 2)
and E is an arbitrary element of the partition, ⟨Ei⟩i. (Proof B.1 in Appendix
A)

If you look at the proof, you will find that the inequality “≥” holds
in general even without the rectangularity, which seems to be natural to
see. On the other hand, note that in the previous section, it was quite
likely that V0 > V ′

0 , where V0 and V ′
0 are the values of the job search for

the one-shot minimizer and for the multi-stage minimizer, respectively. As
we will see soon, the one-shot ε-contamination is not rectangular. So, the
same direction of the two inequalities seems to be (partly) a consequence of
Proposition 5. But, this is misleading because Proposition 5 only compares
the objective functions themselves, not the values of the problem, the latter
of which incorporate the best strategies of the agents.

3.3 The Sequential ε-Contamination

This subsection defines a variant of the one-shot ε-contamination which
IS rectangular, which we call sequential ε-contamination. Before doing it
formally, we sketch its definition intuitively .

First, note that any element p ∈ M (Ω,F2) can be alternatively expressed
as an (m×n)-dimensional vector (or list of m×n joint probability charges)
as

p = (p1,1, p1,2, . . . , p1,n; p2,1, p2,2, . . . , p2,n; . . . ; pm,1, pm,2, . . . , pm,n)
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which satisfies p ∈ [0, 1]m×n and
∑m

i=1

∑n
j=1 pi,j = 1. For simplicity, we

write this as p = (pi,j)i,j (while we already used this notation in some
occasions). As is apparent in the above formulation, p includes all possible
“evolutions” of probability charges over two periods.

Second, by means of this notation, the one-shot ε-contamination of p0,
defined by (24), will be clearly rewritten as

{
p0
}ε

=
{
(1− ε)

(
p0i,j
)
i,j

+ ε (qi,j)i,j

∣∣∣ (qi,j)i,j ∈ [0, 1]m×n

and
∑

i,j qi,j = 1
}
. (27)

Third, for any q ∈ M (Ω,F2), define (∀i, j) δi,j := ε(−p0i,j + qi,j). Then,
it can be easily verified that the requirement that (∀i, j) qi,j ∈ [0, 1] and∑

i,j qi,j = 1 can be turned into the requirement on (δi,j)i,j that (∀i, j) δi,j ∈
[−εp0i,j , ε(1− p0i,j)] and

∑
i,j δi,j = 0. Therefore, (27) is further rewritten as

{
p0
}ε

=
{ (

p0i · p0ij + δi,j
)
i,j

∣∣∣ (∀i, j) δi,j ∈ [δi,j , δ̄i,j ] and
∑

i,j δi,j = 0
}
(28)

with
δi,j := −εp0i,j and δ̄i,j := ε(1− p0i,j) , (29)

where we used p0i,j = p0i · p0ij , which is justified by (22).
Fourth and finally, suppose that we could find two vectors (εi)

m
i=1 and

(εij)
m
i=1

n
j=1, and their ranges they can move around within, such that it

holds that
(∀i, j) δi,j = εijp

0
i + εip

0
ij + εiεij

and (δi,j)i,j thus specified should satisfy the constraints in (28) and (29).
Then, we would have(

p0i · p0ij + δi,j
)
i,j

=
(
(p0i + εi)(p

0
ij + εij)

)
i,j

,

and thus, we had shown that the one-shot ε-contamination could be rewrit-
ten so as to become rectangular, concluding that the one-shot ε-contamination
is rectangular.

Unfortunately, it is impossible for us to execute this procedure, and thus,
one-shot ε-contamination is not rectangular in general.

3.3.1 Counter-Example

To substantiate the statement we gave in the end of the last paragraph, the
next simple example constructs the one-shot ε-contamination which is not
rectangular. In fact, it is exactly the same as the one we used for presenting
a job search model with the one-shot ε-contamination.
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Example 1 Let S := {b, s}. Then, we have Ω = {(b, b), (b, s), (s, b), (s, s)}.
Let p0 be a principal probability charge on (Ω, 2Ω) defined by p0b,b = p0b,s =

p0s,b = p0s,s = 1/4 and we consider
{
p0
}ε

for an arbitrary ε ∈ (0, 1).

We see that p :=
(
1
4 + ε

4 ,
1
4 + ε

4 ,
1
4 − ε

4 ,
1
4 − ε

4

)
∈
{
p0
}ε

(let q :=
(
1
2 ,

1
2 , 0, 0

)
),

and that p′ :=
(
1
4 + ε

4 ,
1
4 − ε

4 ,
1
4 + ε

4 ,
1
4 − ε

4

)
∈
{
p0
}ε

(let q :=
(
1
2 , 0,

1
2 , 0
)
).

From p, we can compute the first-period marginal of p as p|1 = (pb, ps) =(
1
2 + ε

2 ,
1
2 − ε

2

)
, and the conditionals of p, pbb and so on, as pbb = pbs = psb =

pss = 1/2. Similarly, from p′, we can compute p′|1 = (p′b, p
′
s) =

(
1
2 ,

1
2

)
, and

conditionals: p′bb =
1
2 + ε

2 , p
′
bs =

1
2 − ε

2 , p
′
sb =

1
2 + ε

2 and p′ss =
1
2 − ε

2 .
These computations show that(
pbp

′
bb, pbp

′
bs, psp

′
sb, psp

′
ss

)
=

(
1

4
+

ε

2
+

ε2

4
,
1

4
− ε2

4
,
1

4
− ε2

4
,
1

4
− ε

2
+

ε2

4

)
would be an element of

{
p0
}ε
, if it were rectangular. But it would not , in

fact. Because psp
′
ss =

1
4−

ε
2+

ε2

4 < 1
4−

ε
4 = (1−ε)p0s,s, which is the minimum

value ps,s can take on as long as p belongs to
{
p0
}ε
, we must conclude that

psp
′
ss /∈

{
p0
}ε
. □

3.3.2 The Formal Definition of the Sequential ε-Contamination

We are now ready to formally define the sequential ε-contamination along
the line developed in the beginning of this subsection.

Let p0 ∈ M (Ω,F2) be a “principal” probability charge such that (∀i) p0i >
0. Now, let ε be a lengthy real vector, ε = (εi; ε̄i; εij ; ε̄ij)i,j , which is defined
by (∀i, j)

εi := −εp0i ; ε̄i := ε(1− p0i ) ; εij :=
−εp0ij

(1− ε)p0i + ε
; ε̄ij :=

ε(1− p0ij)

(1− ε)p0i + ε
,

(30)
where ε is the one with which the one-shot ε-contamination is defined in
(24), or in (28) and (29).21

Then, we use ε to define the sequential ε-contamination of p0,
{
p0
}seqε

,
by22{

p0
}seqε

:=
{(

(p0i + εi)(p
0
ij + εij)

)
i,j

∣∣∣ (∀i) εi ∈ [εi, ε̄i];
∑

i εi = 0;

(∀i, j) εij ∈ [εij , ε̄ij ] and (∀i)
∑

j εij = 0
}
. (31)

Note that the restrictions imposed by (30) on the ranges within which
(εi)

′s and (εij)
′s may move around are sufficient for (p0i +εi)i and (∀i) (p0ij+

εij)j to be probability charges as well as for p0 to be included in
{
p0
}seqε

.
21Recall that (28) and (29) are still correct as reformulations of the one-shot ε-

contamination.
22We use a boldface letter for the epsilon in the term of “sequential ε-contamination”

because the epsilon there is a vector, not a single number.
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In contrast with the one-shot ε-contamination, the sequential ε-contamination
allows the agent to “renew” Knightian uncertainty after making an obser-
vation in the first period because ε’s may depend on i. This “renewness” is
quite important for the sequential ε-contamination: the agent may discard
or change the probability charge she has initially in mind when she updates
her belief, while she must keep the same probability charge and update it
even after making a new observation.

3.4 The Basic Properties of Sequential ε-Contamination

Because we have finished its definition, we now examine some properties of
the sequential ε-contamination.

Above all, as we notified beforehand, the sequential ε-contamination is
in fact rectangular as the next proposition shows.

Proposition 6 The sequential ε-contamination defined by (31) is rectan-
gular. (Proof B.2 in Appendix A)

The next proposition is also necessary to justify the sequential ε-contamination,
which states that the first-period marginals of the two kinds of ε-contamination:
the one-shot ε-contamination and the sequential ε-contamination, are the
same. If this is not the case, the agent may face either larger or smaller un-
certainty at the very outset depending on which type of the ε-contamination
represents her belief, regardless of what she will obtain as a new piece of
information and how to update uncertainty as time goes by.

Proposition 7 (First-Period Marginals) The first-period marginal Knigh-
tian uncertainty of the sequential ε-contamination ((31) and (30)) and that
of the one-shot ε-contamination ((28) and (29)) coincide. That is,{

p0
}seqε∣∣

1
=
{
p0
}ε∣∣

1
.

(Proof B.3 in Appendix A)

The proof for Proposition 7 suggests that the “bounds,” εi and ε̄i, that
appear in the sequential ε-contamination are “tight.”

Here, some may wonder if Knightian uncertainty which is both rect-
angular and having the same first-period marginal as the given one-shot
ε-contamination should be unique. In other words, someone may think
that such Knightian uncertainty must be nothing but the sequential ε-
contamination itself. Unfortunately, however, this is not the case.

To see this, recall the definition of the sequential ε-contamination, (31),
and note that a necessary and sufficient condition for (p0i+εi)i and (∀i) (p0ij+
εij)j to be probability charges as well as for p0 to be included in

{
p0
}seqε

is
that (∀i, j) − p0i ≤ εi ≤ 0 ≤ ε̄i ≤ 1− p0i and −p0ij ≤ εij ≤ 0 ≤ ε̄ij ≤ 1− p0ij .
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The bounds (30) that define the sequential ε-contamination obviously satisfy
these conditions.

The proof for the rectangularity (Proof B.2) goes through only with this
necessary and sufficient conditions. The proof that the first-period marginals
coincide for both types of the ε-contamination (Proof B.3) invoked only the
bounds, εi and ε̄i, that are defined by (30).

Therefore, there are some bounds, εij and ε̄ij , that are (possibly quite
complicated and) different from the ones in (30) but still keeping satisfying
the necessary and sufficient conditions above. Thus, there are some degree
of freedom in bounds defining the set of conditional probability charges. All
this reveals the non-uniqueness we promised to show.

In sum, the rectangularity and the coincidence of the first-period marginals
are not strong enough to pin down Knightian uncertainty given the one-shot
ε-contamination.

3.5 Comparison between the One-Shot and Sequential ε-
Contamination

Thus far, we have found that the sequential ε-contamination is conveniently
rectangular and has the identical first-period marginal with the one-shot
ε-contamination. Although these are certainly good properties we should
expect for it, we have also shown that a way of formulating Knightian
uncertainty possessing these properties is not unique, given a one-shot ε-
contamination. (See the end of the previous section.)

The main objective of this section is to mathematically scrutinize the
relationship between the two versions of ε-contamination: the one-shot ε-
contamination and the sequential ε-contamination we proposed in the pre-
vious subsection, in order to further motivate the latter specification of
Knightian uncertainty as a suitable specification of the ε-contamination in
a truly dynamic context.

The first result in this section is that the sequential ε-contamination is
at least as large as the one-shot ε-contamination.

Proposition 8 It holds that
{
p0
}ε ⊆ {p0}seqε. (Proof B.4 in Appendix A)

However, it does not hold that
{
p0
}ε ⊇ {p0}seqε, and thus, the inclusion

established in Proposition 8 is strict in general. See Example 1 in Subsection
3.3.1.

Proposition 8 suggests that the sequential ε-contamination may be con-
structed from the one-shot ε-contamination by adding to it all products of
a marginal and a conditional both of which is derived from any (possibly
distinct) probability charge included in the one-shot ε-contamination.

In order to make this idea mathematically more rigorous, we develop a
new concept of what we call the “rectangular-hull.” To this end, let P ⊆
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M (Ω,F2) be any (not necessarily rectangular) Knightian uncertainty. Then,
consider rectangular Knightian uncertainty, say P ′, which is containing P
and is minimal in the sense that, if P ′′ is another Knightian uncertainty
which is rectangular and containing P, then P ′ ⊆ P ′′. We call such P ′

the rectangular-hull of P, if any, and denote it by rectP.

Proposition 9 (Rectangular-Hull) For any p0 ∈ M (Ω,F2) and any ε ∈
(0, 1), rect

({
p0
}ε)

exists and it equals
{
p0
}seqε

. (Proof B.5 in Appendix A)

Proposition 9 is important: it claims that the sequential ε-contamination
is very near to the original one-shot ε-contamination in the sense that it is
“minimal” among the rectangular Knightian uncertainty that contains that
ε-contamination.

Our next result is quite remarkable. It exhibits another equivalent ex-
pression of the sequential ε-contamination which is intuitive and convenient
for its applications. (For instance, see the application in the next section.)
In particular, it expresses the sequential ε-contamination via successive ε’s
together with the conditional principal probability charges.

In the two-period framework we are now working with, we call it ε-ε′

contamination, where ε′ can be described by the simple formula that de-
pends on the original ε with which the one-shot ε-contamination was defined.
The proposition’s beauty will be emphasized if we look at an arbitrarily finite
horizon case, which we will conduct in Appendix B.

Proposition 10 (ε-ε′ Contamination) For any p0 ∈ M (Ω,F2) and any
ε ∈ (0, 1), it holds that{

p0
}seqε

=
{((

(1− ε)p0i + εqi
)
·
(
(1− ε′i)p

0
ij + ε′iqij

))
i,j

∣∣∣ (∀i) qi ∈ [0, 1];∑
i qi = 1; (∀i, j) qij ∈ [0, 1] and (∀i)

∑
j qij = 1

}
, (32)

where (∀i) ε′i is defined by

ε′i :=
ε

(1− ε)p0i + ε
.

Furthermore, (∀i) ε′i > ε. (Proof B.6 in Appendix A)

We conclude this section by comparing the conditional Knightian un-
certainty given the first-period’s observation when Knightian uncertainty is
characterized by the one-shot ε-contamination with when it is characterized
by the sequential ε-contamination.

Nishimura and Ozaki (2017, Chapter 14) extensively studies the con-
ditional Knightian uncertainty when it is characterized by the one-shot ε-
contamination over two periods. In particular, they prove that

(∀i)
{
p0
}ε∣∣

Ei
=
{
p0i
}ε′i
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where ε′i is exactly the same as the one defined above in Proposition 10
(Nishimura and Ozaki, 2017, Theorem 14.5.1, p.242).

If we paraphrase their result in plain English, it says that the set of
conditional probability charges in the one-shot ε-contamination of p0 given
Ei is again the “(one-shot)23 form of ε-contamination” with “new”ε = ε′i and
“new”p0 is the conditional probability charge of p0 given Ei. Furthermore,
ε′i is larger than ε, and hence, uncertainty “dilates.”

Now, let
{
p0
}seqε

be the sequential ε-contamination defined by (31) and
let Ei ∈ ⟨Ek⟩k for some i. Then, the definition of the conditional Knightian
uncertainty and Proposition 10 immediately imply{

p0
}seqε∣∣

Ei
=
{(

(1− ε′i)p
0
ij + ε′iqij

)
j

∣∣∣ (∀j) qij ∈ [0, 1] and
∑

j qij = 1
}
,

(33)
where ε′i is as defined in Proposition 10.

We thus obtain the next proposition.

Proposition 11 (“Posteriors”) For any i and for any Ei ∈ ⟨Ek⟩k,{
p0
}seqε∣∣

Ei
=
{
p0
}ε∣∣

Ei
.

Proposition 11 shows that “posterior” Knightian uncertainty of the se-
quential ε-contamination after making an observation is the same as the
“posterior” of the one-shot ε-contamination after making the same obser-
vation. This fact further strengthens the “nearness” of the sequential ε-
contamination to the one-shot ε-contamination.

The sequential ε-contamination is a reasonable modification of, or even
better than the one-shot ε-contamination in dynamic setups. We may ar-
gue so because the former has the same first-period marginal as the latter,
because the former has the same posterior as the latter (“nearness” from
both sides) , as well as because the former is rectangular above all.

From all of this, we see that the sequential ε-contamination shares ex-
actly the same important property as the one-shot ε-contamination: by
updating according to Bayes’s rule after making an observation, uncertainty
dilates, which may be regarded as a remarkable and robust property of the
ε-contamination-type Knightian uncertainty.24

4 An Application to Job Search Model with Bayesian
Updating

This section applies the sequential ε-contamination developed thus far in
this paper to a job search model. The model specifies the one by Nishimura

23It is the “one-shot” because there is only one period left.
24Shishkin R⃝ Ortoleva (2019) try to measure the degree of the dilation of ambiguity

upon Bayesian updating experimentally in a more general framework.
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and Ozaki (2004) by assuming that the ambiguity is now specified by the
sequential ε-contamination in the framework of the two-period model.25 On
the other hand, it generalizes their model by incorporating Bayesian updat-
ing behavior by the worker.

We then conduct very similar sensitivity analyses to Nishimura and
Ozaki (2004) and show that the basically the same result (an increase in
uncertainty shortens the search period) holds also in the current framework.

4.1 The Model

We employ almost the same model as we used in Section 2 except that the
assumption (2) is now weakened to

c ∨ ws < wb , (34)

where c ∨ ws abbreviates max{c , ws}; the assumption (??) is not assumed
any more; and the assumption (3) is replaced by

Assumption 1 The principal probability charge p0 satisfies

p0bb <
1

2
+

ε

2(1− ε)p0b
and p0sb <

1

2
+

ε

2(1− ε)(1− p0b)
.

And most importantly, the objective function of the worker is now given by

min
p∈{p0}seqε

Ep [y1 + βy2] , (35)

where
{
p0
}seqε

denotes the sequential ε-contamination of p0.
We rely on Assumption 1 when we compute the worker’s maxmin ex-

pected utility later in this section. Note that it will be easier to be satisfied
if the value of ε increases because the inequalities becomes slacker then.
Lemma B.7 in Appendix A provides a sufficient condition for Assumption 1
to be satisfied.

4.2 The Second-Period Value Function

An important novelty of the sequential ε-contamination is that it is rect-
angular (Proposition 6). Therefore, we can invoke Proposition 5 to rewrite
(35) as

min
p∈{p0}seqε

Ep [y1 + βy2] = min
p′∈{p0}seqε|1

Ep′
[
y1 + β min

p′′∈{p0}seqε|E
Ep′′ [y2]

]
,

(36)
where

{
p0
}seqε∣∣

1
and

{
p0
}seqε∣∣

E
be the marginal and conditional sequential

ε-contamination of p0. We thus apply the backward induction in order to
maximize Equation (35), or equivalently, Equation (36).

25An extension to an arbitrarily-finite-horizon model is executed in Appendix B.
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According to the backward induction technique, we first concentrate on
the maximization in the second period after the states both in periods 1 and
2 were realized and observed by the worker and after her period 1’s action,
which is denoted by a1 and may be dependent on period 1’s state, has been
already chosen in period 1.

Note here that the worker’s available actions in period 1, a1, is either
“stop the search” or “continue it,” and that while her available actions in
period 2, denoted by a2, is also either “stop” or “continue,” an opportunity
for her to take action arises only when a1 = “continue.”

The value function in the second period , denoted by V2, is defined as the
maximized value of the worker’s (current-value) second-period’s income, y2,
when the second-period’s action, a2, is optimally chosen by her, given that
the first- and second-period states is (s1, s2) and that the worker actually
took her action a1 in the first period. Then, it follows that

V2(s1, s2)|a1=“stop” = ws1 (37)

and

V2(s1, s2)|a1=“continue” =

{
wb if s2 = b
ws ∨ c if s2 = s .

(38)

In Equation (37), ws1 denotes the wage offer when the state in period 1
is s1 ∈ {b, s} and it means that the worker accepted the wage offer which
was predetermined in period 1 because she stopped the search in the first
period (and she will have no opportunity to take a new action in period 2).

For Equation (38), she needs to contemplate which action she will take
in the second period and she should conclude to accept the offer when s2 = b
by the assumption (34), while, if otherwise, she decides whether to accept
the offer or to decline it depending on whether ws > c (receiving ws by
acceptance) or not (receiving c by declination).

So far, we solved the second-period maximization problem, and hence,
the right-hand side of Equation (36) may be modified to

min
p′∈{p0}seqε|1

Ep′
[
y1(s1) + β min

p′′∈{p0}seqε|E
Ep′′

[
V2(s1, ·)|a1

]]
. (39)

Our next task is to compute the “minimum” of the (many) expected
values of V2. However, if a1 = “stop”, V2 is constant with respect to s2 (see
Equation (37)), and hence, in such a case, Equation (39) is immediately
simplified to

min
p′∈{p0}seqε|1

Ep′ [y1(s1) + βws1 ] . (40)

Thus, for a while, we consider the case where a1 = “continue”. We then
obtain the next result.
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Proposition 12 Suppose that Assumption 1 is satisfied. Then, it holds that

min
p′′∈{p0}seqε|E

Ep′′
[
V2(b, ·)|a1=“continue”

]
=

(1− ε)p0b,b
(1− ε)p0b + ε

wb +
(1− ε)p0b,s + ε

(1− ε)p0b + ε
(ws ∨ c) and (41)

min
p′′∈{p0}seqε|E

Ep′′
[
V2(s, ·)|a1=“continue”

]
=

(1− ε)p0s,b
(1− ε)p0s + ε

wb +
(1− ε)p0s,s + ε

(1− ε)p0s + ε
(ws ∨ c) . (42)

(Proof B.8 in Appendix A)

4.3 The First-Period Value Function

We are now ready to derive the value function in the first period , V1, which
is defined as the maximized value of the worker’s lifetime income given that
the first-period state is realized and observed by the worker and that the
worker has optimally chosen her first-period action based on her observation.
In other words, it is the maximized value of the formula inside the outermost
brackets in Equation (39) given the first-period state.

Importantly, the backward induction guarantees that it is taken for
granted that the worker’s action in the second period has been chosen opti-
mally.

We first consider the case where s1 = b. In this case, the pre-maximized
value of the worker’s lifetime income which depends on the worker’s first-
period action, a1, is summarized as follows by Proposition 12 and by the
analyses we conducted so far under Assumption 1:

wb + βwb if a1 = “stop”

c+ β
(1− ε)p0b,b

(1− ε)p0b + ε
wb + β

(1− ε)p0b,s + ε

(1− ε)p0b + ε
(ws ∨ c) if a1 = “continue”

(43)
Here, the first line is obtained from Equation (40) because y1(b) = wb

when the offer is accepted. Also, the second line is obtained from Equation
(41) by multiplying it by β and by adding c to it.

It is easy to see that the first line is greater than the second line by the
assumption (34). In particular, note that the sum of the second and third
terms is less than βwb because it is β times a mean of wb and a smaller
number than wb.

We thus conclude that

V1(b) = wb + βwb (44)
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because the worker’s best action in period 1 is an acceptance of the wage
offer when s1 = b as we verified in the previous paragraph.26

We now turn to the case where s1 = s. Very similarly to the above
case, under Assumption 1, the pre-maximized value of the worker’s lifetime
income is given by

ws + βws if a1 = “stop”

c+ β
(1− ε)p0s,b

(1− ε)p0s + ε
wb + β

(1− ε)p0s,s + ε

(1− ε)p0s + ε
(ws ∨ c) if a1 = “continue”

(45)
Here, the first line is obtained from Equation (40) because y1(s) = ws

when the wage offer is accepted. Also, the second line is obtained from
Equation (42) as before.

In contrast to the case where s1 = b, the relative relation between the
magnitude of the first line and that of the second line of Equations (45) is
now indeterminate. If it is the case that c > ws, the value of the second line
always dominates that of the first line because, ignoring β, the sum of the
second and third terms in the second line there is a mean of two numbers
both of which are greater than ws. If otherwise (i.e., if c < ws), however, the
value of the first line may dominate that of the second line, say, when ws is
much larger than c, p0s,b is very close to zero, and/or ε is very close to unity.
Thus, the relative size between the two lines hinges upon the configuration
of the parameters.

In sum, the value function in the first period when s1 = s is given by

V1(s) = max

{
ws + βws, c+ β

(1− ε)p0s,b
(1− ε)p0s + ε

wb + β
(1− ε)p0s,s + ε

(1− ε)p0s + ε
(ws ∨ c)

}
(46)

under Assumption 1. Here, the optimal action in the first period is deter-
mined so as to choose the maximum between the two terms: accept the
wage offer if the former term is the larger and decline it if otherwise.

Finally, the “minimum” of the (many) expected values of the lifetime
income, which we call the value of the job search as we did in Section 2
and which we denote by V0, is interpreted as a potential gain the worker
can exploit in the framework of our job search model before the first-period
state is revealed and if we suppose that the worker never makes mistakes in
their future decision-making.

In other words, V0 is expressed by

V0 = min
p′∈{p0}seqε|1

Ep′ [V1(s1)] ,

where V1(s1) are defined by Equations (44) and (46).

26In fact, in order to derive Equation (44), we do not need Assumption 1.
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Furthermore, if we assume that

p0b <
1

2(1− ε)
, (47)

V0 can be explicitly computed as27

V0 = (1− ε)p0bV1(b) +
(
(1− ε)p0s + ε

)
V1(s) , (48)

because it can be easily seen that V1(b) always dominates V1(s) by (34)
and because Inequality (47) is equivalent to (1 − ε)p0b < (1 − ε)p0s + ε. For
example, Inequality (47) always holds if ε > 1/2.

At last, we have “almost” solved the job search model with the sequential
ε-contamination. we say “almost” because we have not completely specified
the worker’s optimal strategy when the first-period state is s. Whether the
worker stops the search or not hinges on the configuration of the model’s
parameters (see Equation (46)).

4.4 Comparative Statics

We close this section by analyzing the effect on the timing when the uncertainty-
averse worker stops the search that is caused by an increase in ε (i.e. an
increase in uncertainty).

When the state observed in the first period is b, the worker always stops
the search regardless of the value of ε (see Equation (44)). Therefore, an
increase in ε does not cause any effect on the worker’s behavior.

In contrast, however, if period 1’s state happens to be s, an increase in
ε may affect the worker’s search behavior. To see this, define π(ε) as the
coefficient of wb in the second element of the right-hand side of Equation
(46), ignoring β. That is, let

π(ε) :=
(1− ε)p0s,b

(1− ε)p0s + ε
.

It is easy to see that π(ε) is in effect the probability of b occurring in the
second period conditional on s occurring in the first period.

Then, it immediately follows that

dπ(ε)

dε
= −

p0s,b

((1− ε)p0s + ε)2
< 0 ,

which shows that an increase in ε always decreases the value of choosing
“continue” in the first period after observing s. Also, recall that Assumption

27The following argument does not require Assumption 1, and hence, if we would be
satisfied with not knowing the exact formula of V1(s), the formula (48) would be correct
as it is.

36



1 keeps being satisfied after an increase in ε (see the remark right after the
statement of Assumption 1). All this shows that an increase in ε may urge
the unemployed worker to stop the job search and to make her income stream
determinate by lowering the reward she would get when she continues the
search. In particular, it is never the case that the worker who has decided
to stop search upon observing s changes her initial decision into continuing
the search when she becomes more pessimistic in the sense that ε increases.

This is summarized by the next proposition.28

Proposition 13 Suppose that Assumption 1 is satisfied and also suppose
that the unemployed worker observed state s in the first period. Then, an
increase in ε may discourage the worker’s behavior of continuing the job
search and of drawing a new wage offer in the second period, while that
increase in ε never encourages more search.

In a similar framework to this paper, Nishimura and Ozaki (2004) stud-
ied a job search model with ambiguity where an uncertainty-averse unem-
ployed worker seeks to maximize her lifetime income in an infinite-horizon
framework, while we consider a two-period finite-horizon model.29

Another important difference between theirs and ours is that they assume
that a worker faces a stationary set of priors that does not change over time,
while a worker in this paper updates a set of priors according to Bayes’s rule
after making observations of states.30

In spite of such a slight difference, this paper’s comparative statics result
is the same as that of Nishimura and Ozaki (2004). That is, we showed an
increase of ambiguity (dilation of a set of probability charges or an increase
in ε) motivates the worker to stop the search earlier. In other words, this
paper shows that the result by Nishimura and Ozaki (2004) is robust in the
sense that basically the same result holds even if the worker updates her
belief by Bayes’ rule, though the analyses here are confined within the class
of the ε-contamination with updating suitably adapted so as to retain time
consistency according to the sequential ε-contamination developed in this
paper.

Intuitively, this is plausible because Bayesian updating dilates ambiguity
(see the last inequality in Proposition 10) and the uncertainty-averse worker
hates successively lower wage offer she might draw by waiting longer.

APPENDICES
28In order to derive only the comparative statics result without knowing the exact form

of the value function, Assumption 1 is not necessary. See Footnote 39.
29See, however, Footnote 25.
30As another important difference, Nishimura and Ozaki (2004) assume that the

worker’s preference is defined by any stationary (thus, constant) set of priors which can
be also represented by the core of a convex capacity, which includes as a special case the
atemporal ε-contamination adopted to the dynamic recursive framework.
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A Derivations of the Claims Made in Section 2

A.1 Proof of Proposition 1

A few lines of computations will reveal that (9) < (10) holds if and only if
the following inequality holds:

ws + w̄ + βws < c+ w̄ + β

(
1− ε

2(1 + ε)
wb +

1 + 3ε

2(1 + ε)
ws

)
. (49)

However, the inequality (49) right above is always true because of both the
second half of the assumption (2) and the assumption (4). □

A.2 Derivation of Formula (13)

For the first maximization in (12), the first out of the two terms is always
larger than the second by the assumption (2).

For the second maximization there, it is easy to see that the second out
of the two terms is larger than the first if and only if

ws + w̄ + βws < c+ w̄ + β

(
1− ε

2(1 + ε)
wb +

1 + 3ε

2(1 + ε)
ws

)
.

However, this inequality is identical with the inequality (49) that appeared
in A.1 right above, and the inequality (49) always holds true under the
maintained assumptions as is said there. Thus, the claim follows. □

A.3 Derivation of Formula (18)

To find the weights appearing in (18), we apply a linear programming
method.

Note that the second largest lifetime income, wb+βwb, takes place when
the first-period state is b. Let the first-period marginal probability charge of
b be 1/2+x, where x is a free variable and must be in the range, [−ε/2, ε/2],
by the definition of the bounds, (15). Given x, the (joint) probability charge
of (s, b), at which the largest lifetime income, c + w̄ + βwb, is realized, will
be minimized at(

1

2
− x

)
·
(
1

2
+ ε′

)
=

(
1

2
− x

)
·
(
1

2
− ε

1 + ε

)
=

(
1

2
− x

)
1− ε

2(1 + ε)
,

and the (joint) probability charge of (s, s), at which the smallest lifetime
income, c+ w̄ + βws, is realized, will be maximized at(

1

2
− x

)
·
(
1

2
+ ε̄′

)
=

(
1

2
− x

)
·
(
1

2
+

ε

1 + ε

)
=

(
1

2
− x

)
1 + 3ε

2(1 + ε)
,
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where the first term in each product in each line is given as such because it
is the first-period’s marginal of s, and the second terms of the products are
given as such by the definition of the sequential ε-contamination, (16).

We then define a linear programming problem by

min
x∈[−ε/2,ε/2]

[(
1

2
+ x

)
(wb + βwb) +

(
1

2
− x

)
1− ε

2(1 + ε)
(c+ w̄ + βwb)

+

(
1

2
− x

)
1 + 3ε

2(1 + ε)
(c+ w̄ + βws)

]
. (50)

By the ranking of the value of each lifetime income and the preliminary
consideration made in the previous paragraph, the solution to (50), which
is denoted x∗ and takes place inevitably at a “corner,” achieves the minimal
expected lifetime income.

Also, we know that if the derivative of the objective function of (50) with
respect to x is positive, then x∗ = −ε/2; and if otherwise, then x∗ = ε/2,
because it is a minimization problem.

However, it is immediately follows that the derivative turns out to be
negative by the assumption (4), and thus, we conclude that x∗ = ε/2. Sub-
stituting this back into (50), the worker’s minimal expected lifetime income
given this strategy is determined by

1 + ε

2
(wb + βwb) +

(1− ε)2

4(1 + ε)
(c+ w̄ + βwb)

+
(1− ε)(1 + 3ε)

4(1 + ε)
(c+ w̄ + βws) ,

which is equal to (18), and thus, the claim is verified. □

A.4 Proof of Proposition 3

Some tedious but straightforward computations show that (17) < (18) holds
if and only if

2ε

1− ε
(wb + βwb) +

1 + ε

1− ε
(ws + w̄ + βws)

< c+ w̄ + β

(
(1− ε)

2(1 + ε)
wb +

1 + 3ε

2(1 + ε)

)
. (51)

But, by the second halves of both the assumptions (2) and (4), we can show
that (51) holds true if the following inequality is satisfied:

2ε

1− ε
(wb + βwb)−

1 + ε

1− ε
(ws + w̄ + βws) < wb + βwb . (52)

It follows immediately that the inequality (52) is equivalent to

(1− 3ε)(wb + βwb) + (1 + ε)(ws + w̄ + βws) > 0 ,
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which is the very assumption we imposed in the first half of the assumption
(4). We, thus, conclude that the worker’s maxmin-expected lifetime income
is given by (18). □

B A Lemma and Proofs

B.1 Proof of Proposition 5

First, because a set of probability charges with the common finite support
can be identified as a subset of the finite-dimensional Euclidean space, the
weak ∗ compactness of P implies that so are P|1 and P|E .

Second, given any p = (pi,j)i,j ∈ P, note that (22) implies that p can
be written as p = (p′i · p′′ij)i,j , where (p′i)i ∈ P|1 is the list of the first-period
marginals of p and (p′′ij)j ∈ P|E is the list of well-defined conditionals when
E = Ei is observed in the first period.

Third, by the law of iterated expectations, and by the remark made right
before the statement of the proposition, we obtain

Ep [u2] = Ep′
[
Ep′′ [u2]

]
= Ep′

[
Ep′′ [u2 |⟨Ei × S⟩i ] (s1, s2)

]
,

where the outer expectations of the middle and right terms aggregate with
respect to s1. Therefore, we obtain

Ep [u1 + u2] = Ep′
[
u1 + Ep′′ [u2]

]
.

Fourth, we show that “≥” holds in (26). The equality in the previous
paragraph immediately implies that for any p ∈ P,

Ep [u1 + u2] ≥ min
p′∈P|1

Ep′
[
u1 + min

p′′∈P|E
Ep′′ [u2]

]
,

which proves the claim. We remark that we did not use the rectangularity
of P. Thus, this direction of the equality always holds.

Fifth and Finally, we show “≤” holds in (26). To this end, on the
contrary, assume that > holds there. By the compactness of the relevant
sets, there exist p′∗ = (p′∗i )i ∈ P|1 and p′′∗ = (p′′∗ij )j ∈ P|E that attain
the minima in the right-hand side of (26). By the rectangularity of P,
p∗ := (p∗i,j)i,j := (p′∗i × p′′∗ij )i,j must be contained by P. Thus,

min
p∈P

Ep [u1 + u2] > min
p′∈P|1

Ep′
[
u1 + min

p′′∈P|E
Ep′′ [u2]

]
= Ep′∗

[
u1 + Ep′′∗ [u2]

]
= Ep∗ [u1 + u2]

≥ min
p∈P

Ep [u1 + u2] ,
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where we invoked the law of iterated expectations again. This is a contra-
diction we desire. □

B.2 Proof of Proposition 6

First, observe that, for any p ∈
{
p0
}recε

and for any i, j, pi = p0i + εi and
pij = p0ij + εij because (∀i)

∑
j εij = 0 by assumption.

Second, to complete the proof, let p′, p′′ ∈
{
p0
}recε

. Then, p′ can be writ-

ten as
(
(p0i + ε′i)(p

0
ij + ε′ij)

)
i,j

for some (ε′i)i and (ε′ij)ij satisfying (31), and

p′′ can be so as
(
(p0i + ε′′i )(p

0
ij + ε′′ij)

)
i,j

for some (ε′′i )i and (ε′′ij)ij satisfying

(31). Then, from the first paragraph, we conclude that

(p′i · p′′ij)i,j =
(
(p0i + ε′i)(p

0
ij + ε′′ij)

)
i,j

holds. Because (ε′i)i and (ε′′ij)ij satisfy all the requirements in (31), (p′i ·
p′′ij)i,j ∈ P and the proof is complete. □

B.3 Proof of Proposition 7

First note that{
p0
}recε∣∣

1
=
{(

p0i + εi
)
i

∣∣∣ (∀i) εi ∈ [εi, ε̄i] and
∑

i εi = 0
}
.

Furthermore, it is easy to see that{
p0
}ε∣∣

1
=
{
p0
∣∣
1

}ε
.

By (28), we know that p0
∣∣
1
=
(
p0i +

∑
j δi,j

)
i
. But, from (29) and the first

two definitions in (30), it follows that (∀i)
∑

j δi,j = −εp0i = εi and that

(∀i)
∑

j δ̄i,j = ε(1− p0i ) = ε̄i, which completes the proof. □

B.4 Proof of Proposition 8

Let p ∈
{
p0
}ε

and write it as p = (p0i,j + δi,j)i,j with some (δi,j)i,j that
satisfies the requirements stated in (28).

By definition, it follows that p|1 ∈
{
p0
}ε∣∣

1
. This, (28), and (29) mean

that we can write p|1 as p|1 =
(
p0i + δ′i

)
i
with some (δ′i)i such that (∀i) −

εp0i ≤ δ′i ≤ ε(1− p0i ) and
∑

i δ
′
i = 0. That is, let (∀i) δ′i :=

∑
j δi,j .

For each i, define εi by εi := δ′i. Then, by definition and the previous
paragraph, it holds that

∑
i εi = 0, that εi = −εp0i ≤ δ′i = εi and that

ε̄i = ε(1− p0i ) ≥ δ′i = εi, where (∀i) εi and ε̄i are defined by (30). Thus, all
the requirements for εi in (31) are now met.

Next, for each i, j, define εij by εij := (δi,j − δ′ip
0
ij)/(p

0
i + δ′i). Then,

(∀i)
∑

j εij = (
∑

j δi,j − δ′i
∑

j p
0
ij)/(p

0
i + δ′i) = (δ′i − δ′i)/(p

0
i + δ′i) = 0, where
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we used the definition of δ′i and the fact that (∀i) p0ij is a (conditional)
charge.

Let εij and ε̄ij be as defined in (30). First, we show that (∀i, j) εij ≥ εij .
To this end, note that ∂εij/∂δ

′
i = (−p0i,j − δi,j)/(p

0
i + δ′i)

2 < 0, where the

numerator must be negative because −p0i,j − δi,j ≤ −p0i,j − (−εp0i,j) = (ε −
1)p0i,j < 0 since δi,j ≥ −εp0i,j and ε < 1. Therefore, εij attains its lower
bound when δ′i attains its upper bound. We thus obtain (∀i, j)

εij ≥
−εp0i,j − ε(1− p0i )p

0
ij

p0i + ε(1− p0i )

=
−εp0i,j − εp0ij + εp0i,j

p0i + ε(1− p0i )

=
−εp0ij

(1− ε)p0i + ε
= εij .

Second, we show that (∀i, j) εij ≤ ε̄ij , note that εij = (δi,j−
∑

ℓ δi,ℓ p
0
ij)/(p

0
i+∑

ℓ δi,ℓ), and hence that ∂εij/∂δi,j =
∑

ℓ ̸=j(p
0
i,ℓ + δi,ℓ)/(p

0
i +

∑
ℓ δi,ℓ)

2 > 0.31

Therefore, εij attains its maximum when δi,j is maximal, that is, when
δi,j = ε(1− p0i,j). However, this occurs precisely only when δi,ℓ = −εp0i,ℓ for
ℓ ̸= j because if otherwise, the two requirements that

∑
i,j δi,j = 0 and that

(∀i, j) δi,j ≥ −εp0i,j cannot be satisfied simultaneously. Therefore, at this

time, it holds that
∑

ℓ δi,ℓ = ε(1− p0i ), and we obtain

εij ≤
ε(1− p0i,j)− ε(1− p0i )p

0
ij

p0i + ε(1− p0i )

=
ε(1− p0ij)

(1− ε)p0i + ε
= ε̄ij .

So far, we have found (εi)i and (εij)i,j that satisfies (31) and (30).
Finally, it suffices to verify that for these (εi)i and (εij)i,j , it holds that

p0i,j + δi,j = (p0i + εi)(p
0
ij + εij) for each i and j. But, this is immediate from

the definitions of εi and εij : (∀i, j)

(p0i + εi)(p
0
ij + εij)

= p0i,j + εip
0
ij + (p0i + εi)εij

= p0i,j + δ′ip
0
ij + (p0i + δ′i)

δi,j − δ′ip
0
ij

p0i + δ′i
= p0i,j + δ′ip

0
ij + δi,j − δ′ip

0
ij

31We may assume the strict positivity here because the numerator being zero will take
place only when pi,j = 1 for some i and j, which implies, together with the assumption
that p ∈

{
p0
}ε

, that p0 = (0, . . . , 0, 1, 0, . . . , 0), meaning that p0 represents no risk, which
we excluded throughout this paper.
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= p0i,j + δi,j ,

which completes the proof. □

B.5 Proof of Proposition 9

Because
{
p0
}seqε

is rectangular (Proposition 6), it suffices to prove that any
rectangular set including

{
p0
}ε

contains
{
p0
}seqε

.　
Let p0 ∈ M (Ω,F2), let ε ∈ (0, 1), and let i and j be arbitrarily fixed

below.
First, note that there exists p′ ∈

{
p0
}ε

such that p′i = (1−ε)p0i +ε, which
is the maximum value the first-period marginal, pi, can assume subject to
p ∈

{
p0
}ε
. To do this, we can let (qi,j)i,j be such that

∑
ℓ qi,ℓ = 1.

Second, note that there exists p′′ ∈
{
p0
}ε

such that

p′′ij =
(1− ε)p0i,j + ε

(1− ε)p0i + ε
,

which is the maximum value the conditional, pij , can assume subject to
p ∈

{
p0
}ε
. To do this, we can let (qi,j)i,j be such that qi,j = 1.

The above two paragraphs show that p′i ·p′′ij = (1−ε)p0i,j+ε is a value pi,j
can assume as long as p is an element of any rectangular set that contains{
p0
}ε
. Here, some computations exhibit

p′i · p′′ij = (1− ε)p0i,j + ε =
(
p0i + ε(1− p0i )

)(
p0ij +

ε(1− p0ij)

(1− ε)p0i + ε

)
= (p0i + ε̄i)(p

0
ij + ε̄ij) ,

where ε̄i and ε̄ij are defined by (30).
Similarly, note that there exists p′′′ ∈

{
p0
}ε

such that p′′′i = (1 − ε)p0i ,
which is the minimum value the first-period marginal, pi, can assume subject
to p ∈

{
p0
}ε
. (Let (qi,j)i,j be such that (∀ℓ) qi,ℓ = 0.) Also note that there

exists p′′′′ ∈
{
p0
}ε

such that

p′′′′ij =
(1− ε)p0i,j

(1− ε)p0i + ε
,

which is the minimum value the conditional, pij , can assume subject to
p ∈

{
p0
}ε
. (Let (qi,j)i,j be such that

∑
ℓ ̸=j qi,ℓ = 1.)

Therefore, by a similar reasoning as above, p′′′i · p′′′′ij is a value pi,j can

assume as long as p is an element of any rectangular set that contains
{
p0
}ε
.

Here, some computations exhibit

p′′′i · p′′′′ij = (1− ε)p0i ·
(1− ε)p0i,j

(1− ε)p0i + ε
= (1− ε)p0i ·

(
p0ij −

εp0ij
(1− ε)p0i + ε

)
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= (p0i + εi)(p
0
ij + εij) ,

where εi and εij are defined by (30).

By the first paragraph, we know that rect
({

p0
}ε) ⊆

{
p0
}seqε

. Fur-
thermore, the arguments so far show that we can always find a probability
charge in any rectangular set containing

{
p0
}ε

that achieves the “upper rim”
of
{
p0
}seqε

for arbitrary i and j and (possibly) another probability charge
in such a set that achieves the “lower rim” of

{
p0
}seqε

for arbitrary i and j.
This fact proves that both sets are identical. □

B.6 Proof of Proposition 10

First, note that we have (∀i) (1 − ε)p0i + εqi = p0i + ε(qi − p0i ). Then, it is
immediate that εi := ε(qi−p0i ) satisfies all the requirements in (31) and (30)
by (32).

Second, note that (∀i, j) (1 − ε′i)p
0
ij + ε′iqij = p0ij + ε′i(qij − p0ij). Then,

it is immediate that εij := ε′i(qij − p0ij) satisfies all the requirements in (31)
and (30) by (32) and the definition of ε′i.

Finally, the last claim follows from the fact that (1 − ε)p0i + ε < 1 for
each i, which holds because (∀i) p0i < 1 since we assume that (∀i) p0i > 0
(see the start of Subsection 3.1.2). □

B.7 Lemma

Assume that p0 = p1 ⊗ p1 with some probability charge p1 on S. Then, the
two inequalities in Assumption 1 is satisfied whenever ε > 1/2.32

Proof First, note that all of p0bb, p
0
sb, p

0
b are now equal to p1b , where p1b is

simply a probability charge of b because p0 is now the product of p1.
Then, the first inequality in Assumption 1 turns out to be(

p1b
)2 − 1

2
p1b −

ε

2(1− ε)
< 0 .

If we solve this by replacing the inequality by the equality, we obtain

p1b =
1

4
± 1

2

√
1

4
+

2ε

1− ε
.

Thus, the desired inequality holds true if p1b lies between the smaller and
larger solutions of this quadratic equation. Firstly, because ε > 0, its smaller
solution is always negative and p1b is obviously larger than this. Secondly, if

32The learning procedure does not take place when the probability charge is defined as
a product one and our main concern in this section is consequences of an agent’s updating
behavior. In this sense, the lemma should be understood as providing purely theoretical
information about the content of Assumption 1.
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ε = 1/2, the larger solution is unity and the larger solution increases when
ε increases, which shows that p1b is less than the larger solution of the above
quadratic equation when ε > 1/2. We are done about the first inequality in
Assumption 1.

Next, we do the same thing for the second inequality in Assumption 1
and get the quadratic equation:(

p1b
)2 − 3

2
p1b −

1

2(1− ε)
> 0

and its smaller and larger solutions as

p1b =
3

4
± 1

2

√
9

4
− 2

1− ε
.

It turn out that the inside of the square-root is negative when ε > 1/9,
verifying that the quadratic equation is always above zero. Because ε > 1/2
implies this situation, we are done also about the other inequality. □

B.8 Proof of Proposition 12

We prove only Equation (41). A symmetric reasoning also applies to show
Equation (42).

By Assumption 1, we have

p0bb <
1

2
+

ε

2(1− ε)p0b
.

By noting the decomposition of a joint probability charge into its marginal
and conditional, p0s,s = p0s · p0ss (see Equation (22)), it immediately follows
that the above inequality is equivalent to

(1− ε)p0b,b < (1− ε)p0b,s + ε ,

which, in turn, is clearly equivalent to

(1− ε)p0b,b
(1− ε)p0b + ε

<
(1− ε)p0b,s + ε

(1− ε)p0b + ε
.

It then turns out that the left-hand side of the last inequality is equal to
(1− ε′b) p

0
bb and that its right-hand side is equal to (1− ε′b) p

0
bs + ε′b, where

ε′b is defined in Proposition 10. The former corresponds to the smallest
conditional in (32) (by letting qbb = 0 there) and the latter corresponds to
the largest conditional in (32) (by letting qbs = 1 there).

Finally, an application of Proposition 10 with the assumption (34) proves
that Equation (41) is the smallest conditional expectation given s1 = b and
given the sequential ε-contamination of p0, (32). □
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C Arbitrarily-Finite-Horizon Models

The purpose of Appendix B is to show that the results obtained for the
two-period models in the main text go through as it is even in arbitrarily-
finite-horizon models. We decided to relegate it to the appendix because
we are afraid that its heavy notations conceal the main message of this
paper, which we hope can be conveyed to the reader even only in a simple
two-period setting.

C.1 (Slightly Heavy) Notations and Definitions

Let T ∈ N\{0, 1} be a length of a finite horizon, and for each t ∈ {1, 2, . . . , T},
nt (≥ 2) be a number of elements of each finite partition of S; that is, let
⟨E1,i1⟩

n1
i1=1, ⟨E2,i2⟩

n2
i2=1, . . . , ⟨ET,iT ⟩

nT
iT=1 be finite partitions of S, which are

fixed throughout the rest of the paper. We identify each of (S, ⟨E1,i1⟩
n1
i1=1),

(S2, ⟨E1,i1×E2,i2⟩
n1
i1=1

n2
i2=1), . . . , (S

T , ⟨E1,i1×E2,i2×· · ·×ET,iT ⟩
n1
i1=1

n2
i2=1 . . .

nT
iT=1)

with each of the measurable spaces, (Ω,F1), (Ω,F2), . . . , (Ω,FT ), exactly
as we did in the main text. (Note that Ω := ST .)

Let M (Ω,FT ) be the space of all probability charges on (Ω,FT ). Given
p ∈ M (Ω,FT ), we write the joint probability charge, p(E1,i1 × E2,i2 × · · · ×
ET,iT ), simply as pi1,i2,...,iT , where for each t ≤ T , Et,it ∈ ⟨Et,it⟩nt

it=1. For
each p ∈ M (Ω,FT ), the first-t-period marginal of p is denoted and defined
by33

(∀t)(∀i1, i2, . . . , it) pi1 i2 ... it := p(E1,i1 × E2,i2 × · · · × Et,it × S × · · · × S) .

Obviously, the first-T -period marginal is identical to the joint probability
charge.

Next, the one-period-ahead conditional of p given E1,i1×E2,i2×· · ·×Et,it

is denoted and defined by

(∀t ≤ T − 1)(∀i1, i2, . . . , it) p+it+1|i1 i2 ... it :=
pi1 i2 ... it it+1

pi1 i2 ... it
,

where the probability charges in the numerator and denominator are the
first-some-appropriate-period marginals defined above.34

For any p ∈ M (Ω,FT ), we denote its first-t-period marginal charge in
M (Ω,Ft) (not a single number) by pt,

35 as well as its one-period-ahead con-
ditional charge in M (S, ⟨Et+1,it+1⟩it+1) (not a single number) given E1,i1 ×
E2,i2 × · · · × Et,it by p+(·|E1,i1 × E2,i2 × · · · × Et,it).

33When T = 2, pi1 = p|1(E1,i1), where the right-hand side was introduced in the main
text.

34When T = 2, p+ is well-defined only when t = 1 and p+i2|i1 = pi1i2 , where the right-
hand side was the notation we used in the main text.

35Note that it is only when t = 1 that p|t = pt holds, where the former notation appeared
in the main text.
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C.1.1 The Decomposition of a Probability Charge

For each p ∈ M (Ω,FT ), its decomposition into its marginal and (one-period-
ahead) conditional is now represented as follows:

(∀t ≤ T − 1) pi1 i2 ... it it+1 = pi1 i2 ... it · p+it+1|i1 i2 ... it , (53)

where the left-hand side in (53) is p’s fisrt-(t + 1)-period marginal, while
its right-hand side is the product of p’s fisrt-t-period marginal and its one-
period-ahead marginal given the first t observations.

These decompositions (that is, Equations (53)) will be used repeatedly
in what follows.

C.2 Knightian Uncertainty and Its Rectangularity

A nonempty subset P of M (Ω,FT ) is called Knightian uncertainty .
Given any Knightian uncertainty, P, and any t ≤ T −1, its first-t-period

marginal Knightian uncertainty , denoted by Pt, is the nonempty subset of
M (Ω,Ft) that is defined by

Pt := { pt | p ∈ P } ,

where pt is the first-t-period marginal probability charge defined in C.1.36

Let P be Knightian uncertainty, t ≤ T −1, suppose that E1×· · ·×Et ∈
⟨E1,i1×· · ·×Et,it⟩i1,...,it has been observed in the first t periods, and suppose
that every probability charge in Pt+1 is updated by Bayes’ rule. As a result
of this procedure, we obtain the one-period-ahead conditional Knightian
uncertanty, denoted P+|E1×···×Et , which is a subset of M (S, ⟨Et+1,it+1⟩it+1).
That is,

P+|E1×···×Et :=
{
p+(·|E1 × · · · × Et) | p ∈ P

}
, (54)

where p+ is the one-period-ahead probability charge defined in C.1.
Knightian uncertainty P is rectangular by definition if for any p′, p′′ ∈

P, it holds that

(∀t ≤ T − 1)
(
p′i1 i2 ... it · p

′′+
it+1|i1 i2 ... it

)
i1,i2,...,it,it+1

∈ Pt+1 .

Note that if Knighian uncertainty is given by a singleton set (that is, if it is
a risk), then it is clearly rectangular in view of (53).

In order to state an important result, let t ≤ T and denote by ut an
arbitrary real-valued function on Ω that is Ft-measurable. As we did in the
main text, we denote by Ep[u] the standard mathematical expectation of
such a function with respect to a probability charge p ∈ M (Ω,FT ).

The next proposition states that with rectangular Knightian uncertainty,
the iterated or recursive maxmin preference, which is a dynamic extension

36Note that it is only when t = 1 that P|t = Pt holds. See Footnote 35.
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of the atemporal preference à la Gilboa and Schmeidler (1989), is identified
with the “one-shot” maxmin preference.

Proposition 14 (Epstein-Schneider, 2003) Let P be rectangular Knigh-
tian uncertainty that is weak ∗compact. Then,

min
p∈P

Ep
[∑T

i=1 ui

]
= min

p′∈P1

Ep′
[
u1 + min

p′′∈P+|E1

Ep′′
[∑T

i=2 ui

]]
= · · · · · · · · ·

= min
p′∈P1

Ep′
[
u1 + min

p′′∈P+|E1

Ep′′
[
u2 + min

p(3)∈P+|E1×E2

Ep(3)
[
u3 + · · ·

min
p(T )∈P+|E1×···×ET−1

Ep(T )
[uT ] · · ·

]]]
,

where p(t) abbreviates p
′′···′ (t primes), which is a generic probability charge

relevant there.

Proof We only prove the equation:

min
p∈P

Ep
[∑T

i=1 ui

]
= min

p′∈P1

Ep′
[
u1 + min

p′′∈P+|E1

Ep′′
[
u2 + min

p(3)∈P+|E1×E2

Ep(3)
[
u3 + · · ·

min
p(T )∈P+|E1×···×ET−1

Ep(T )
[uT ] · · ·

]]]
.

The other equations can be proved in a very similar manner. Also, we only
prove that “≤” holds there because the other direction of the inequality can
be proved almost by the same way as Proposition 5 without invoking the
rectangularity.

To this end, assume that > holds there on the contrary. By the com-
pactness of the relevant Knightian Uncertainty, which is guaranteed by the
assumed weak ∗compactness of P, there exists a sequence of probability
charges such that p′∗ ∈ P1 ; p

′′∗ ∈ P+|E1 ; . . . ; p
(T )∗ ∈ P+|E1×···×ET−1

,
each of which attains the corresponding minimum.

Here, note that by the decomposition of a risk, for any sequence of
observations, E1, . . . , ET , it holds that

p∗i1,i2,...,iT = p∗i1i2...iT := p
(T−1)∗
i1i2...iT−1

· p(T )∗
iT |i1i2...iT−1

= p
(T−2)∗
i1i2...iT−2

· p(T−1)∗
iT−1|i1i2...iT−2

· p(T )∗
iT |i1i2...iT−1

= . . . . . . . . .
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= p′∗i1 · p
′′∗
i2|i1 · · · · · p

(T )∗
iT |i1i2...iT−1

(see Equation (53)).
By exactly the same reasoning as Proposition 5, we reached the contra-

diction because
(
p∗i1,i2,...,iT

)
i1,i2,...,iT

∈ P by its rectangularity . □

C.3 The Formal Definition of the Sequential ε-Contamination

Let p0 ∈ M (Ω,FT ) and let ε ∈ (0, 1). Then, the one-shot ε-contamination
of p0 is denoted and defined by{

p0
}ε

:=
{
(1− ε)p0 + εq

∣∣ q ∈ M (Ω,FT )
}
. (55)

Use the same p0 and ε to define εi1 := −εp0i1 , ε̄i1 := ε(1 − p0i1), (∀t ∈
{2, . . . , T})

εi1...it :=
−εp0+it|i1...it−1

(1− ε)p0i1...it−1
+ ε

and ε̄i1...it :=
ε(1− p0+it|i1...it−1

)

(1− ε)p0i1...it−1
+ ε

, (56)

where p0+ is the one-period-ahead conditional of p0 defined in C.1. Then,
the sequential ε-contamination of p0 is defined by

{
p0
}seqε

:=
{(

(p0i1 + εi1)(p
0+
i2|i1 + εi1i2) · · · (p0+iT |i1...iT−1

+ εi1...iT )
)
i1,...,iT

∣∣∣
(∀i1) εi1 ∈ [εi1 , ε̄i1 ];

∑
i1
εi1 = 0; . . . ;

(∀i1, . . . , iT ) εi1...iT ∈ [εi1...iT , ε̄i1...iT ]

and (∀i1, . . . , iT−1)
∑

iT
εi1...iT−1iT = 0

}
. (57)

C.4 Properties of the Sequential ε-Contamination and Its
Comparison to the One-Shot ε-Contamination

Here, we show that a series of results established for the two-period setting
in the main text can be extended to an arbitrarily-finite-horizon setting.

Proposition 15 The sequential ε-contamination is rectangular.

Proof The proof can be conducted very closely following the proof for the
case where T = 2 (Proposition 6). Therefore, it is omitted. □

Proposition 16 It holds that
{
p0
}ε ⊆ {p0}seqε.
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Proof When T = 2, the claim holds true (Proposition 8).
Now, let

{
p0
}ε

be the one-shot ε-contamination with T = 3 and use the

same p0 and ε to define p2 :=
(
(p0i1 + εi1)(p

0+
i2|i1 + εi1i2)

)
i1i2

∈ M (S2, ⟨E1,i1×

E2,i2⟩i1,i2). By the way of the construction of
{
p0
}seqε

with T = 3 from p2,
the claim for T = 3 can be proved by very closely following the proof for the
case where T = 2 by letting εi1i2i3 := (δi1,i2,i3 − δi1,i2p

0+
i3|i1i2)/(p

0
i1i2

+ δi1,i2),

where δi1,i2 :=
∑

i3
δi1,i2,i3 and p0i1i2 :=

∑
i3
p0i1i2i3 for some δi1,i2,i3 . Thus,

we omit the details of the proof.
For T ≥ 4, repeat the procedure briefly described in the previous para-

graph. □

Proposition 17 (ε1-ε2- · · · -εT Contamination) It holds that{
p0
}seqε

=
{( (

(1− ε1)p0i1 + ε1qi1
) (

(1− ε2i1)p
0+
i2|i1 + ε2i1qi1i2

)
· · ·(

(1− εTi1... iT−1
)p0+iT |i1... iT−1

+ εTi1... iT−1
qi1i2...iT

))
i1,i2,...,iT

∣∣∣
(∀i1) qi1 ∈ [0, 1];

∑
i1
qi1 = 1; . . . ; (∀i1, . . . , iT ) qi1... iT ∈ [0, 1]

and (∀i1, . . . , iT−1)
∑

iT
qi1... iT−1iT = 1

}
, (58)

where ε1 := ε, which is defining the one-shot ε-contamination, and (∀t ∈
{2, . . . , T})(∀(i1, . . . , it−1)) εti1... it−1

is defined by

εti1... it−1
:=

ε

(1− ε)p0i1... it−1
+ ε

.

Furthermore, (∀i1, . . . , iT−1) ε1 < ε2i1 < · · · < εTi1... iT−1
, unless (∃t) Et = S.

Proof The first half of the claim can be proved by very closely following
the proof for the case when T = 2, and hence, the details of the proof is
omitted.

To show that it holds that, along any sequence of observations, ε1 <
ε2i1 < · · · < εTi1... iT−1

, simply note that p0i1... it−1
> p0i1... it−1it

unless Et = S
by the definition of the marginal. □

The one-period-ahead conditional Knightian uncertainty of any sequen-
tial ε-contamination has a very convenient form.

To be precise, let p0 ∈ M (Ω,FT ) and let ε ∈ (0, 1). Then, note that for
any t ≤ T , Proposition 17 and the definition of the marginal imply that{

p0
}seqε
t

=
( (

(1− ε1)p0i1 + ε1qi1
) (

(1− ε2i1)p
0+
i2|i1 + ε2i1qi1i2

)
· · ·(

(1− εti1... it−1
)p0+it|i1... it−1

+ εti1... it−1
qi1i2... it

))
i1,i2,...,it

,
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where q’s satisfy the conditions imposed in (58) and εti1... it−1
is defined in

Proposition 17.
Furthermore, this together with the definition of the one-period-ahead

conditional Knightian uncertainty, (54), adapted to the sequential ε-contamination
shows that for any t ≤ T and any E1 × · · · × Et−1,({

p0
}seqε)+ ∣∣

E1×···×Et−1

=
{(

1−εti1... it−1

)
p0+(·|E1×· · ·×Et−1) + εti1... it−1

q
∣∣ q ∈ M (S, ⟨Et,it⟩it)

}
.

(59)

Here, note that the resemblance between (33) and (59), which strongly
suggests that the next proposition holds true.

Proposition 18 (“Posteriors”) For any t ≤ T and any E1 × · · · ×Et−1,
it holds that ({

p0
}recε)+ ∣∣

E1×···×Et−1
=
({

p0
}ε)+ ∣∣

E1×···×Et−1
.

Proof The way of the construction of the one-period-ahead conditional
allows us to mimic the proof for the case where T = 2 (Proposition 11), and
hence we omit the proof. □

In order to state our final result on the updating behavior with the
sequential ε-contamination, we largely simplify the dynamic structure un-
derlying our model.37

Let (Ω,FT ) := (ST ,⊗T
t=1⟨Ei⟩ni=1), where ⊗T

t=1⟨Ei⟩ni=1 is the T -time self-
direct-product of the identical finite partition of S, ⟨Ei⟩ni=1. Also, assume
that p0 := p00 ⊗ p00 ⊗ · · · ⊗ p00, which is the T -time self-direct-product of
some p00 ∈ M (S, ⟨Ei⟩ni=1).

Then, we can prove the following proposition.

Proposition 19 Assume that the stochastic structure is as described in the
previous paragraph. Then, for any t ≤ T and any Ei1 × . . . × Eit−1 × Eit

such that (∀it) Eit ̸= S, it holds that({
p0
}recε)+ ∣∣

Ei1
×···×Eit−1

⊊
({

p0
}recε)+ ∣∣

Ei1
×···×Eit−1

×Eit
.

37We can dispense with this simplifying assumption if we incur a cost that the conclusion
of the next proposition holds only when some condition are met. For such a condition,
see Nishimura and Ozaki (2017, Theorem 14.5.2, p.243)
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Proof In view of the Equation (59) and the current underlying stochastic
structure, the left-hand side of the inclusion in the proposition turns out to
be {(

1− εti1... it−1

)
p00 + εti1... it−1

q
∣∣ q ∈ M (S, ⟨Ei⟩i)

}
,

while its right-hand side turns out to be{(
1− εt+1

i1... it

)
p00 + εt+1

i1... it
q
∣∣ q ∈ M (S, ⟨Ei⟩i)

}
.

Then, the strict inclusion we desire follows because εti1... it−1
< εt+1

i1... it
by

Proposition 17. □
The last proposition exhibits that an active updating behavior upon

observing the occurrence of an event always dilates the degree of uncer-
tainty whenever Knightian uncertainty is specified by the sequential ε-
contamination and underlying stochastic structure is as specified in the
proposition.38

As we already claimed with respect to the two-period models, we repeat
to emphasize that Propositions 6, 10 (in particular, its very last inequality),
15 as well as 17 (in particular, its last successive inequalities) all together
show that time-consistency (rectangularity) and dilation of ambiguity upon
Bayesian updating are completely consistent.

C.5 Job Search with Bayesian Updating in an Arbitrarily-
Finite-Horizon

Let T ∈ N\{0, 1}. We now consider the T -period job search model with
the sequential ε-contamination. Except for the number of the periods, the
model is exactly the same as the one we considered in Section 2.

For any t ≥ 1, let Vt : St → R be the value function at period t. We
assume that the value function is measured by the current value, that is, Vt

is measured in terms of the value at period t.
First, note that it holds that

(∀t ≥ 1) Vt(s1, s2, . . . , st) = wb + βwb + · · ·+ βT−twb

if t = min{ i ∈ {1, 2, . . . , t}| si = b}, because the worker accepts the wage
offer as soon as the state turns out to be b by the assumption (34).

Therefore, it suffices to concentrate on the value functions only when
the state s keeps occurring in order to completely characterize the whole
system of the value functions. By denoting the states’ history (s, s, . . . , s),
where the state s is taking place successively t-times, by st, we will invoke
the backward induction method to obtain

VT (s
T ) = ws ∨ c ,

38Note that in Proposition 19, the principal probability charge in each period, p00,
is independent over time, but uncertainty itself is not because of the presence of non-
independent term ε · q. Thus, Bayesian updating does matter.
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VT−1(s
T−1) = max

{
ws + βws , c+ β

(
p+
b|sT−1wb + p+

s|sT−1(ws ∨ c)
)}

,

VT−2(s
T−2) = max

{
ws + βws + β2ws ,

c+ β
(
p+
b|sT−2VT−1(s

T−2, b) + p+
s|sT−2VT−1(s

T−1)
)}

,

. . . . . . . . .

V1(s) = max

{
ws + βws + β2ws + · · ·+ βT−1ws ,

c+ β
(
p+b|sV2(s, b) + p+s|sV2(s, s)

)}
,

where

p+b|st =
(1− ε)p0stb

(1− ε)p0st + ε
and p+s|st =

(1− ε)p0sts + ε

(1− ε)p0st + ε
, (60)

for t = 1, 2, . . . , T − 1.
Here, note that the former term in (60) is the (conditional) probability

weight on the “better” value function in the next period and that

(∀t = 1, 2, . . . , T − 1)
∂

∂ε

(
(1− ε)p0stb

(1− ε)p0st + ε

)
< 0 ,

which shows that in the sequence of the value functions listed above, an
increase in ε tends to make the second element (out of two) in the braces
smaller.

We thus established the following result.39

Proposition 20 An increase in ε (i.e., an increase in uncertainty) may
discourage the worker’s behavior of continuing the job search beyond the
current period at period t if the state s keeps occurring up to period t. If
otherwise, the worker should have already stopped the search regardless of
the states’ history up to period t. In particular, it is not the case that the
worker who has decided to stop the search will change her mind to continue
to search because of an increase in ε in any event.

This proposition clearly states that Proposition 13 holds true regardless
of the length of the periods as far as it is finite.

We conclude the paper by presenting a comparative statics result in a
special situation, that is, when the principal probability charge p0 is given
by the T -time self-direct-product as p0 := p00 ⊗ p00 ⊗ · · · ⊗ p00.

39In this appendix, we do not invoke Assumption 1 because we do not derive the explicit
closed-form of the value function here. See Footnote 28.
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If this is the case, (60) will become

p+b|st =
(1− ε)(p00s )tp00b
(1− ε)(p00s )t + ε

and p+s|st =
(1− ε)(p00s )tp00s + ε

(1− ε)(p00s )t + ε
,

for t = 1, 2, · · ·T − 1. Hence, because p00b , p00s ∈ (0, 1), it follows that

lim
t→∞

p+b|st = 0 and lim
t→∞

p+s|st = 1 .

All this shows the next proposition.

Proposition 21 If the principal probability charge p0 is given by the T -time
self-direct-product as p0 = p00 ⊗ p00 ⊗ · · · ⊗ p00, then there exists a (possibly
large, but finite) T such that the worker stops the search and accepts the
wage offer by period T. (T may depend only on ε and p00.)

This proposition may be understood as insisting that not only an increase
in uncertainty but also even its presence itself tends to urge the agent to
make uncertain prospects determinate at some point over the course of an
employment spell because of the gradual decrease of the reservation wage.
This is consistent with accumulated empirical evidence showing that the
reservation wage declines over such periods. (See Brown, Flinn and Schotter
(2011, p.948) and literature cited in the footnote 1 there.)
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