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Abstract

This paper shows that new information may increase perceived uncertainty if uncertainty
is characterized as Knightian uncertainty. We consider ε-contamination of confidence: an
economic agent is (1-ε) × 100% certain that uncertainty she faces is characterized by a
particular stochastic model, but that she has a fear that, with ε ×100% chance, her conviction
is wrong and she is left ignorant about the “true” model. In this situation, if the economic
agent follows Bayesian procedure or its variant, which is considered as rational in the theory
of economics, her confidence erodes after having new information, if initial confidence is not
strong enough.
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1. Introduction and Summary

Economic agents including policy makers face various uncertainties when they make

decision. Here we must distinguish two different kinds of uncertainty. The first one, which

is often called risk, is formulated as a known probability distribution with possibly unknown

parameters learnable from past experience of, say, stock prices and the GDP growth rate in the

near future. The second one is another kind of uncertainty, which deserves the name of true

fundamental uncertainty. This is uncertainty that cannot be reduced to a known distribution,

often called Knightian uncertainty in recognition of the writing of Frank Knight. Not only are

they uncertain about the future value of stock prices and GDP growth in a known probability

distribution, but also they do not have clear knowledge of their probability distribution itself.

To put it differently, they do not have clear confidence in the “stochastic model” that they often

use to describe economic activities in the real world.

One way to cope with the uncertain world is to gather information about unknown

economic conditions, and to learn about underlying parameters from it. Thus, learning, which

is often formulated as Bayesian learning, is considered to reduce the magnitude of uncertainty.

In fact, if the uncertainty agents face is risk, Bayesian learning is shown to reduce the magnitude

of uncertainty appropriately defined.

The purpose of this paper is to show this is not always the case if the uncertainty is

Knightian.1 In contrast to risk, Knightian uncertainty is characterized as a set of distributions,

instead of a single distribution. Hence, learning is characterized by an update process of the set

of distributions after each of random sampling. In this paper, ε-cotamination of confidence is

taken as an example of Knightian uncertainty. Suppose that an economic agent is (1−ε)×100%

certain that uncertainty she faces is characterized by a particular dynamic stochastic model, but

that she has fear that, with ε × 100% chance, her conviction is wrong and she is left ignorant

about the “true” model. We call this situation ε-contamination of confidence and 1− ε can be
1In the statistics literature, Seidenfeld and Wasserman (1993) presented necessary and sufficient conditions that

dilation of uncertainty (which corresponds to erosion of confidence discussed later) take place in the case of the
“no-narrowing” Bayes rule if uncertainty is formulated as a set of distributions (that is, Knightian uncertainty).
However, these conditions are hard to explain and thus they are difficult to apply in economic problems of our
interest. The contribution of this paper is, firstly, to show that confidence erosion can happen under relatively
simple, not-so-implausible conditions in the case of ε-contamination, and secondly, to present sufficient conditions
under which dilation still occurs in the “range-narrowing” maximum-likelihood rule.
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taken as a measure of confidence. It is a convenient characterization of fundamental uncertainty

economic agents face2 and it has axiomatic foundation3.

Suppose further that the economic agent follows Bayesian procedure or its variant, which

is considered rational in the theory of economics.4 Then, we show that her confidence erodes

(i.e., the degree of confidence 1 − ε decreases) after having a new observation, if the initial

degree of confidence in the stochastic model is not strong compared with the new observation’s

“informational value”5. The reason of confidence erosion is that new information brings in a

new dynamic possibility which is not previously considered seriously.

This paper is organized as follows. In Section 2, we present a simple example of con-

fidence erosion in the learning model developed by Rothschild (1974). A general model of

confidence erosion is presented in Sections 3 through 5. In Section 3, we formulate stochastic

environment and the decision maker’s objective function, and define “dilation of uncertainty”,

that is, a phenomenon that “new observation reduces confidence.” Section 4 defines and exam-

ines two “sensible” updating rules: the maximum-likelihood and multi-prior Bayesian6. Section

5 contains the main results: In the case of ε-contamination, if the initial degree of confidence

is not strong compared with a new observation’s “informational value”, dilation of uncertainty

occurs regardless of whether the maximum-likelihood rule or the Bayesian one is utilized.

2. An Example: Rothschild’s Learning Model

Let us consider a case considered by Rothschild (1974), which has been one of the most

well-known examples in the economics of learning. An unemployed worker is searching for a
2The concept of ε-contamination defined in this paper is used in Nishimura and Ozaki (2004) who examine

search behavior under the Knightian uncertainty.
3Nishimura and Ozaki (2006) show that if economic agents’ behavior is in concord with several axioms, then

their perceived uncertainty can be characterized as ε-contamination of confidence. Their axioms are not at all
singular. Thus, their results suggest that ε-contamination of confidence may commonly be observed.

4We consider the maximum-likelihood rule and a multi-prior Bayesian one since they seem intuitive and
sensible. After having new observation, the maximum-likelihood rule chooses, among all distributions in the set
characterizing the Knightian uncertainty, those that put the highest probability on the occurrence of an actual
observation, and updates the chosen distributions by using the Bayes rule. The multi-prior Bayesian rule updates
all distributions in the set by using the Bayes rule. Both rules are based on Bayesian ideas.

5See Theorem 2 of Section 5. The exact meaning of “informational value” will be clarified later in this paper.
The result is surprising particularly in the case of the maximum-likelihood “update” rule, in which substantial
“narrowing” of the range of probability measures seems to occur after obtaining a new observation through the
maximum-likelihood principle.

6In fact, to our knowledge, there is no other update rule that has been discussed as widely and intensively as
these rules in the literature.
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job. Different firms offer different wages. She takes a job interview sequentially and gets one

wage quotation each time. To make analysis simple and apparent, we consider a two-period

model.7

In Rothschild’s model, the unemployed worker is risk-neutral, and contemplates her

optimal policy in terms of expected income. She does not know the wage distribution, and

learns about the distribution from the wage observation. In particular, the unemployed worker

assumes that the wage-offer distribution is a multinomial distribution with a support of W =

{w1, . . . , wk} ⊆ R. However, she does not know probability pi of a particular wi.

It is then assumed that the unemployed worker thinks that the probability of pi’s is

distributed according to a Dirichlet distribution over a set P,

P =

{
p = (p1, . . . , pk) ∈ R

k

∣∣∣∣∣ (∀i) pi > 0 and
k∑

i=1

pi = 1

}
,

whose density function is

f(p|α) =
Γ(α1 + · · · + αk)
Γ(α1) · · ·Γ(αk)

pα1−1
1 · · · pαk−1−1

k−1 (1 − ∑k−1
i=1 pi)αk−1 ,

where α ∈ R
k
++ is a parameter vector and Γ(·) is the gamma function. The mean of each

marginal, pi (i = 1, . . . , k), is given by

E[pi] =
αi∑k

�=1 α�

. (1)

Suppose that the decision-maker observed a wage offer wi in the first period. Then, by

DeGroot (1970, p.174, Theorem 1), the posterior distribution of wj ’s, updated by Bayes’ rule

upon observing wi, turns out to be the Dirichlet distribution with the parameter vector

α�

�
= (α1, . . . , αi−1, αi + 1, αi+1, . . . , αk) . (2)

The learning process of the unemployed worker has the following interpretation. Suppose

that the agent has a “prior” wage distribution which is multinomial with parameters p0 =

(p0
1, . . . , p0

k) over the wage offer in the second period, where for each j, p0
j is a probability of

wj ’s occurrence and it is defined by p0
j ≡ E[pj ]. Then, from (1), her “prior” second-period

7Rothschild (1974) considers an infinite horizon. We deviate from his work in this respect, in order to make
our argument simple and transparent.
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expected wage income will be

k∑
j=1

wjp
0
j =

k∑
j=1

wjE[pj ] =

∑k
j=1 wjαj∑k

�=1 α�

. (3)

Then, the worker gets the wage offer wi for some i in the first period. Upon observing wi,

she revises her prior distribution, p0, to the posterior one, p�

�
= (p′1(wi), . . . , p′k(wi)), where

p′j(wi) = E[pj |wi]. Then, with some calculation8, her “prior” second-period expected income

(3) is revised to the “posterior” second-period expected income given the observation of the first

period:

k∑
j=1

wjp
′
j(wi) =

k∑
j=1

wjE[pj |wi] =

∑
j �=i wjαj∑k

�=1 α� + 1
+

wi(αi + 1)∑k
�=1 α� + 1

=

∑k
j=1 wjαj + wi∑k

�=1 α� + 1
.

The unemployed worker then uses this posterior second-period expected wage income in con-

templating her optimal strategy: whether to stop searching now or to go on to the next period.

The above example of Rothschild assumes that the unemployed worker is perfectly certain

that the wage distribution is a multinomial one and the distribution of the wage-occurrence

probability is a Dirichlet distribution. However, there is no a priori rationale that the worker

assumes this particular combination.

Let us now deviate from Rothschild’s specification, and consider a case in which the

unemployed worker is almost certain that the true distribution is the multinomial distribution

with the known p0 = (p0
1, . . . , p0

k), but that she is not completely certain about that. Thus,

she fears that, with ε×100% probability, the true distribution is different from this multinomial

distribution, and moreover, she may not have any information about the true parameter values

if p0 is not the true one. In other words, the unemployed worker is almost ((1 − ε) × 100%)

certain about the wage distribution but has a ε× 100% fear that she is wrong and left ignorant

about the true distribution.9 In this setting, it is natural to call ε as a measure to gauge

8Letting E[·|wi] be the posterior mean, (1) and the paragraph containing (2) imply that

(∀j �= i) E[pj |wi] =
αj

�k
�=1 α� + 1

and E [pi|wi] =
αi + 1

�k
�=1 α� + 1

.

9Nishimura and Ozaki (2006) show that, if the decision maker’s behavior is consistent with certain plausible
axioms, her decision making is characterized as maximizing the minimum of her expected utility over multiple
priors that are characterized by ε-contamination of confidence explained in the text. (Their representation result
is in the Choquet framework, but the basic argument can easily be interpreted in this way.) The set of axioms
they presented are an extension of Schmeidler (1989)’s axioms.
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ignorance, or equivalently, (1 − ε) as the degree of confidence.10

Since the unemployed worker is risk-neutral and thus maximizes expected income, her

situation is the same as that of a decision-maker facing (a restricted form of) ε-contamination

of the distribution.11 Formally, let ε ∈ (0, 1) and let P × P be a set of pairs of p in the first

period and p� in the second period12:

P × P =
{

(p,p�)
∣∣ p,p� ∈ P

}
.

Then, the ε-contamination of (p,p�) = (p0,p0) considered in this section,
{
(p0,p0)

}ε, is

{
(p0,p0)

}ε =
{

(1 − ε) (p0,p0) + ε(q,q�)
∣∣ (q,q�) ∈ P × P

}
.

We now examine what happens to the degree of confidence when new observation arrives.

However, in order to proceed with our analysis, we should specify the decision maker’s objective

function and update procedure of priors in the case of the Knightian uncertainty or multiple

probability distributions.

Firstly, it is known (see Schmeidler (1989) and Gilboa and Schmeidler (1989)) that in

multiple-probability cases of this kind, if the decision-maker’s behavior is in accordance with

certain sensible axioms, then her behavior is characterized as being uncertainty-averse: when the

decision-maker evaluates her position, she uses probability corresponding to the “worst” scenario.

Following this line of argument, we assume that the unemployed worker is uncertainty-averse.

Secondly, we assume that the decision maker uses Bayesian procedure to multiple priors by

applying it to all probabilities in
{
(p0,p0)

}ε.13

Let us now consider this Bayesian process. Let (wi, w
′
j) denote an event that the first-

period wage observation is wi and the second-period one is wj . Then, the probability of this
10ε-contamination has been widely used in statistics literature to specify a set of measures (see, for example,

Berger, 1985). There, the sensitivity of an estimator to the assumed prior distribution ((�0,�0) in the text) is
the main concern in the context of Bayesian estimation problems. While we also specify a set of measures or
Knightian uncertainty by ε-contamination, our main concern is not robustness of a specfic estimator but the set
itself, which reflects the decision-maker’s lack of confidence.

11In this section, we restrict contamination, (�, ��), to be a product probability measure to make a proof simple
and intuitive. However, in general, contamination is not restricted to a product probability measure but it is
allowed to be any probability measure defined over the product space. We consider these general cases in the
formal analysis of Sections 3 to 5. See in particular Eq (13) in Section 5.

12In other words, � × � is the set of all product measures of the form: � ⊗ �
� when we regard � and �

� as
probability measures on W . In the text, we denote �⊗ �

� by (�,��).
13The case of maximum-likelihood rule will be discussed in Sections 3 and 4. Here we analyze the Bayesian

rule since it is more tractable than the maximum-likelihood rule.
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event measured by one element, (1 − ε) (p0,p0) + ε(q,q�), of
{
(p0,p0)

}ε is

Pr
(
wi, w

′
j

)
= (1 − ε) p0

i p
0
j + εqiq

′
j

and a corresponding second-period marginal probability is

Pr
(
w′

j

)
= (1 − ε) p0

j + εq′j .

And hence, the set of the prior second-period probabilities is given by

{
(1 − ε) p0 + εq�

∣∣q� ∈ P
}

. (4)

Suppose as before that wi is observed. The unemployed worker updates each element

in the set of the prior second-period probabilities to their posterior, so that we have

Pr
(
w′

j

∣∣wi

)
=

Pr(wi, w
′
j)

Pr (wi)
=

(
1 − ε′

)
p0

j + ε′q′j (5)

where

ε′ =
εqi

(1 − ε) p0
i + εqi

. (6)

The set of corresponding posteriors is the set of all these probabilities obtained by varying q

and q�.

Let

ε̄′ =
ε

(1 − ε) p0
i + ε

.

Then, we have

(
1 − ε′

)
p0

j + ε′q′j =
(
1 − ε̄′

)
p0

j + ε̄′
((

1 − ε′

ε̄′

)
p0

j +
ε′

ε̄′
q′j

)
.

Since ε̄′ ≥ ε′ and that P is the set of all conceivable q�, we know

(
1 − ε′

ε̄′

)
p0 +

ε′

ε̄′
q� ∈ P .

Consequently, the set of corresponding posteriors is a subset of

{ (
1 − ε̄′

)
p0 + ε̄′q�

∣∣q� ∈ P
}

. (7)
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Conversely, take one element of (7), (1 − ε̄′) p0 + ε̄′q̄�. Then, it is always possible to find

ε′ ∈ [0, ε̄′] (and ultimately q ∈ P) and q� ∈ P satisfying that (1 − ε̄′) p0 + ε̄′q̄� = (1 − ε′)p0 +ε′q�

and then qi ∈ [0, 1] satisfying (6). Since the set of posterior distributions corresponding to (4) is

characterized by (5) and (6) with q and q� varying (see the paragraph containing (5) and (6)),

(7) is a subset of that set. Thus, all things considered, we conclude that the set of posteriors

after wi is observed is equal to (7).

Let us now compare the set of priors (4) and that of posteriors (7). The latter shows

that the unemployed worker is now (1− ε̄′)×100% certain about p0: her fear that her conviction

is wrong now increased from ε to ε̄′ (ε̄′ > ε as far as p0
i < 1). The decision-maker’s degree of

confidence is decreased after the observation of wi. Note that there is no “surprise” justifying

a decrease in confidence.

It is clear that dynamic feature of the Knightian uncertainty plays a crucial role to

obtain this confidence erosion. Here, the Knightian uncertainty is dynamic in the sense that

the decision-maker thinks that the true distribution may change over time.14 Loosely speaking,

the argument in the second to the last paragraph reveals that a new observation makes the

decision-maker “find” a combination of probabilities over two periods leading to a posterior

probability that is not considered by her before (probability outside her prior beliefs).

In this section, we have presented an example that new information reduces confidence

of the decision-maker about the uncertain world. However, the argument we have employed

is based on a specific example of a mutli-nomial distribution a la Rothschild. Thus, one may

question the generality of the results. In the rest of this paper, we extend our model to a general

setting and to show that the same result holds in general cases.

In the next section, we reformulate the basic problem of this section in a general frame-

work of behavior under a dynamic Knightian uncertainty. We consider two updating rules

commonly utilized in the literature for this kind of problems: maximum-likelihood and (gener-

alized) Bayesian. The formal exposition of these updating rules is given in Section 4. In Section

14If the wage distribution of the first period is perfectly correlated with the one of the second period, then
we cannot have self-feeding fear. Perfect correlation means that if the decision maker gets wage wi in the first
period then she gets wi in the second period. In this case, uncertainty is completely resolved in the first period.
However, so long as correlation is not perfect, we have a possibility of self-feeding fear.
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5, we show that, under gerenral conditions, the same results as in this section holds true for

general probability measures and for both updating rules in general ε-contamination cases: new

information reduces the decision-maker’s confidence.

3. The Two-Period Dynamic Model of Knightian Uncertainty

In order to make a formal analysis, we have to set up a dynamic model in which the

decision-maker have multiple probability measures about her economic environment. In the

following, we first specify stochastic environment and consider an update rule. We then incor-

porate the update rule into the decision-maker’s objective function to represent evolution of her

view of the world in the form of multiple probability measures over stochastic environment. We

exclusively consider a two-period model. An extension to multi-period cases is straightforward

but notationally cumbersome.

In the following, notations are somewhat involved, because of the complexity introduced

by a dynamic Knghtian uncertainty: the decision-maker does not have perfect confidence not

only about a “true” probability measure each period but also how it changes over periods.

Consequently, the model, including the objective function and updating rules, is specified in an

entire dynamic structure of the deicision-maker’s stochastic environment.

Information Structure. Let W be a state space for each single period and let Ω = W × W

be the whole state space. A generic element of Ω is denoted by (w1, w2).

The information structure, which represents the basis of the decision-maker’s view of

the world, is exogenously given by a filtration F = 〈Ft〉t=0,1,2. We assume that F0 = {φ,Ω},
that F1 is represented by a finite partition of Ω of the form: 〈Ei ×W 〉i for some finite partition

〈Ei〉mi=1 of W , and that F2 is represented by a finite partition of Ω of the form: 〈Ei × Fj〉i,j for

some finite partition 〈Fj〉nj=1 of W . Clearly, it holds that F0 ⊆ F1 ⊆ F2. We further assume

that m ≥ 2.

We abuse a notation to denote by (W, 〈Ei〉i) the measurable space on which the algebra

is generated by the partition 〈Ei〉i and we denote the set of all probability measures on it by

M(W, 〈Ei〉i). Similar notations apply to other cases in obvious manners.
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Given p ∈ M(Ω,F2), we denote by p|1 its restriction on (Ω,F1). Although p|1 is formally

a measure on Ω, it can be naturally regarded as the one on (W, 〈Ei〉i) and in that case, p|1(·) =

p(· × W ). Thus viewed, p|1 can be considered as the first-period marginal probability measure

of p. Similarly, we define the second-period marginal probability measure, p|2, of p. That is, let

p|2 ∈ M(W, 〈Fj〉j) be defined by p|2(·) = p(W × ·).
The decision-maker’s view of the world is represented by not a single probability measure

but a set of probability measures (Knightian uncertainty). Formally, we assume that the

decision-maker’s Knightian uncertainty is represented by P ⊆ M(Ω,F2).

Finally, let us now define “priors.” Given P ⊆ M(Ω,F2), we define the (prior) second-

period marginal Knightian uncertainty, P|2, as a set of second-period marginal probability mea-

sures such that

P|2 = { p|2 | p ∈ P } .

Here, the adjective prior emphasizes the fact that this is a set of the second-period marginal

probability measures before the decision-maker obtains an observation in the first period.

Income Process. An income in each period, denoted y1 and y2, is a function from Ω = W×W

into R. We call (y1, y2) an income process if it is F-adapted, that is, (∀t) yt is Ft-measurable.

Given an income process (y1, y2), we write the value of y2 as y2|w1∈E, w2∈F if (w1, w2) ∈ E × F

for some E×F ∈ F2. The F-adaptedness allows us to write the value of y1 as y1|w1∈E if w1 ∈ E

for some E such that E × W ∈ F1. We denote the set of F-adapted income processes by Y (F).

Updating Rules. Let p be a probability measure on (Ω,F2), that is, let p ∈ M(Ω,F2). After

observing Ei in the first period, the decision maker updates her probability measures.

Let us now first consider the ordinary Bayesian updating procedure. Given p and

Ei such that p(Ei × W ) > 0, we denote by p|2(·|Ei) the (posterior) probability measure on

(Ω,F2) conditional on the occurrence of Ei ×W . Here, the adjective posterior signifies the fact

that this is a probability measure after the decision-maker obtains an observation Ei. That

is, (∀i, j) p|2(Ei × Fj |Ei) = p(Ei × Fj)/p(Ei × W ). By writing p|2(·|Ei) = p|2(Ei × ·|Ei),

p|2(·|Ei) may be regarded as a probability measure on (W, 〈Fj〉j). (It should be noted here
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that p|2(·) = p|2(·|W ).) The Bayesian procedure is defined as a function: (p,Ei) 	→ p|2(·|Ei),

which maps a pair of measure p on (Ω,F2) and an event Ei in the first period, to the measure

on (W, 〈Fj〉j) according to the manner defined in this paragraph.

An updating rule we consider in this paper generalizes the function p|2 in the ordinary

Bayesian procedure to the case of multiple p’s, that is, where there exists Knightian uncertainty.

Formally, an updating rule is a function that maps a pair (P, E), where P is the decision-maker’s

Knightian uncertainty (a nonempty compact subset of M(Ω,F2)) and E is an 〈Ei〉i-measurable

event such that (∀p ∈ P) p(E × W ) > 0, to a set of (posterior) probability measures, which is

a nonempty compact subset of M(W, 〈Fj〉j). We denote an updating rule by φ and its specific

value by φ(P, E). (This seemingly cumbersome notation is necessary for taking account of

dynamic Knightian uncertainty, as we will see later in this and following sections.)

There is one natural restriction on sensible updating rules. When P happens to be a

singleton, they should coincide with Bayes’ rule:

φ({p},E) = { p|2(·|E) } . (8)

Objective Function. Let us now turn to the issue of formulating the objective function of

the decision-maker. As in the previous section, we assume that the minimum of the “expected”

life-time income, V , is her objective function to be maximized, which is given by:

V (y1, y2) = min
p∈�

m∑
i=1


(y1|w1∈Ei) + β min

q∈φ(�,Ei)

n∑
j=1

(
y2|w1∈Ei, w2∈Fj

)
q(Fj)


 p(Ei × W ) , (9)

where (y1, y2) ∈ Y (F), φ is a updating rule, β (> 0) is a discount factor and P is the decision-

maker’s Knightian uncertainty, which is a subset of M(Ω,F2). In order that this definition is

meaningful, P must be a nonempty compact subset of M(Ω,F2) satisfying (∀p ∈ P)(∀i) p(Ei ×
W ) > 0.

Preferences represented by special cases of Eq (9), where the updating rules are further

specified, are axiomatized by Epstein and Schneider (2003) and Wang (2003) (see next section).

Dilation of the Knightian Uncertainty. We now define “dilation” of the Knightian uncer-

tainty. Let P ∈ M(Ω,F2) be the Knightian uncertainty that the decision-maker faces and let φ
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be her update rule. The dilation of the Knightian uncertainty takes place upon the occurrence

of E ∈ 〈Ei〉i if the set of posterior probability measures generated by the update rule is strictly

“greater” than the set of prior probability measures, or equivalently if it holds that

φ(P, E) ⊃ P|2

where the set-inclusion is strict. In this case, the set of prior probability measures does not shrink

but dilates: the decision-maker faces larger uncertainty than before obtaining the observation.15

In contrast, if the opposite strict set-inclusion holds for some E ∈ 〈Ei〉i, we describe it

as the contraction of the Knightian uncertainty upon the occurrence of E. In this case, the

decision maker faces smaller uncertainty than before obtaining the observation.

4. The (Generalized) Bayesian and Maximum-Likelihood Rules

We consider two updating rules which have been extensively studied in the literature.16

15In the statistics literature, the dilation is defined with respect to lower- and upper-probabilities. To be more
precise, let � ⊆ �(Ω,F2) and let B ∈ F2 be such that (∀p ∈ �) p(B) > 0. Then, define the lower-probability,
denoted �, by

(∀A ∈ F2) �(A) = inf
p∈�

p(A)

and define the conditional lower-probability, denoted �(·|B), by

(∀A ∈ F2) �(A|B) = inf
p∈�

p(A ∩ B)/p(B) .

The upper-probability � and the conditional upper-probability �(·|B) are defined symmetrically. Each of these
“probabilities” turns out to be non-additive probability measure, or capacity. It is said that B dilates A if the
following holds:

�(A|B) < �(A) ≤ �(A) < �(A|B) . (10)

For this concept of dilation and study of its properties, see Seidenfeld and Wasserman (1993). Herron, Seidenfeld
and Wasserman (1997) contains some additional analysis. Walley (1991) extensively studies the lower- and upper-
probabilities.

Seidenfeld and Wasserman (1993) derives a necessary and sufficient condition for the dilation to take place in
the sense of (10), for cases including the ε-contamination. Their condition, however, is based on a particular
event A, not on set of measures, so that its application to economic models is rather difficult if not impossible.

In Section 5, we derive a sufficient condition for the dilation to take place for the ε-contamination in the sense
defined in the text. Our definition is more general than (10) since it is applied directly to a set of measures, not
to a particular event A. We consider the maximum-likelihood update rule as well as the generalized Bayesian
update rule (see the next section) while (10) is related only to the generalized Bayesian rule. Further, we consider
dynamic nature of Knightian uncertainty explicitly to derive economic intuition behind the dilation.

16See Dempster (1967, 1968); Shafer (1976); Fagin and Halpern (1990); Gilboa and Schmeidler (1993); and
Denneberg (1994).
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The generalized Bayesian rule (henceforth, the GB rule)17 is denoted by φGB and is defined by

(∀P ⊆ M(Ω,F2))(∀E ∈ 〈Ei〉i) φGB(P, E) = { p|2(·|E) | p ∈ P } . (11)

This means that the decision-maker updates all probability measures according to the ordinary

Bayesian procedure. In particular, she does not discard any of these measures after the ob-

servation. It is evident that the procedure we employed in Section 2 corresponds to this rule.

When φ is specified by φGB , the decision maker’s objective function becomes

V (y1, y2) = min
p∈�

m∑
i=1


(y1|w1∈Ei) + β min

p∈�

n∑
j=1

(
y2|w1∈Ei, w2∈Fj

)
p|2(Fj |Ei)


 p(Ei × W ) .

A preference-theoretic foundation of this updating rule is given by Epstein and Schneider

(2003). They axiomatize the preference relation represented by (9) with P being “rectangular”

and φ being the GB rule (see Epstein and Schneider (2003) for details including the concept of

rectangularity).

To define the Maximum-Likelihood rule (henceforth, the ML rule)18, let P∗ be defined

by

(∀E ∈ 〈Ei〉i) P∗(E) = arg max { p|1(E) | p ∈ P } .

Then, the ML rule is defined by

(∀P ⊆ M(Ω,F2))(∀E ∈ 〈Ei〉i) φML(P, E) = { p|2(·|E) | p ∈ P∗(E) } . (12)

A preference-theoretic foundation of this updating rule is given by Wang (2003). He

axiomatizes the preference relation represented by (9) with P being the core of some convex

probability capacity and φ being the GB rule and the ML rule (see Wang (2003) for details

including the concept of probability capacity).19

Both the GB and ML rules satisfy the requirement we impose on updating rules, (8).

17The generalized Bayesian rule is originally proposed as an update rule for a non-additive measure. More
precisely, the rule was developed for � which is characterized as the core of a non-additive measure (Fagin and
Halpern, 1990; Denneberg, 1994). The text use of the rule is its natural extension to the case of a more general
�.

18The maximum-likelihood rule is originally proposed as an updating rule for a non-additive measure (Dempster,
1967, 1968; Shafer, 1976). Later, Gilboa and Schmeidler (1993) showed that this rule is identical to the maximum-
likelihood updating rule, which we extend to the case of a more general � in the text.

19For a related work which provides some axiomatic foundation to the ML rule, see Gilboa and Schmeidler
(1993).
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Lemma 1. Assume that P = {p} for some p ∈ M(Ω,F2) such that (∀i) p(Ei × W ) �= 0. Then,

(∀i) φGB(P, Ei) = φML(P, Ei) = { p|2(·|Ei) } .

Proof. For the GB rule, the claim is immediate from (11). For the ML rule, the claim is also

immediate from (12) and the fact that (∀i) P∗(Ei) = {p}. �

This lemma shows that the both rules extend Bayes’ rule to the case where the prior is

not unique. Finally, it immediately follows from the definition that

(∀P)(∀i) φML(P, Ei) ⊆ φGB(P, Ei) .

That is, the “degree of (Knightian) uncertainty” in the posteriors implied by the ML rule is no

more than that implied by the GB rule.

5. ε-contamination and Dilation of the Knightian Uncertainty

In this section, we consider a case where the decision-maker’s Knightian uncertainty, P,

is specified by a general ε-contamination. Here ε-contamination is “general”, since we do not

restrict it to be of a product probability measure. We give a simple and easily verifiable condition

under which dilation takes place. Using this condition, we then show that if ε-contamination

under consideration is a restricted one, that is, one of a product of probability measures (as in

the case of Section 2), the decision-maker always experiences dilation of uncertainty, regardless

of whether the updating rule is GB or ML.

Formally, let p0 be a probability measure on (Ω,F2) such that (∀i) p0(Ei × W ) > 0,

and let ε ∈ (0, 1). We assume that the decision-maker’s P (⊆ M(Ω,F2)) is characterized by the

ε-contamination of p0, such that

P =
{
p0

}ε ≡ {
(1 − ε)p0 + εq

∣∣ q ∈ M(Ω,F2)
}

. (13)

In the following analysis, the one-period counterpart of the two-period ε-contamination

(13) turns out to be important. Applying the same idea to the one-period case, we define for

each ε ∈ (0, 1) and each E ∈ 〈Ei〉i, the ε-contamination of p0|2(·|E) (∈ M(W, 〈Fj〉j)) by

{
p0|2(·|E)

}ε ≡ {
(1 − ε)p0|2(·|E) + εq2

∣∣ q2 ∈ M(W, 〈Fj〉j)
}

.
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The following lemma shows that the second-period “restriction” of the ε-contamination

of p0 is the same as the ε-contamination of the second-period “restriction” of p0. In a sense, the

“operator” of taking ε-contamination and the “operator” of taking second-period “restriction”

or marginal are interchangeable with respect to p0, which is a probability measure on (Ω,F2)

such that (∀i) p0(Ei × W ) > 0.

Formally,
{
p0

}ε∣∣
2
, the (prior) second-period marginal Knightian uncertainty of the

ε-contamination of p0, is equal to
{
p0|2

}ε, the ε-contamination of the (prior) second-period

marginal probability measure p0|2 = p0|2(·|W ):

Lemma 2. Taking ristriction (or marginal), ·|2, and taking ε-contamination, {·}ε, are inter-

changeable with respect to p0: that is, (∀ε ∈ (0, 1))
{
p0

}ε∣∣
2

=
{
p0|2

}ε.

Proof. To show
{
p0

}ε∣∣
2
⊆ {

p0|2
}ε, let p2 ∈ {

p0
}ε∣∣

2
. Then, there exists p ∈ {

p0
}ε such

that p2 = p(W × ·). That p ∈ {
p0

}ε in turn implies that there exists q ∈ M(Ω,F2) such that

p = (1− ε)p0 + εq. Hence, p2 = p(W ×·) = (1− ε)p0|2(·)+ εq|2(·). This shows that p2 ∈ {
p0|2

}ε

because q|2(·) ∈ M(W, 〈Fj〉j).
To show

{
p0

}ε∣∣
2
⊇ {

p0|2
}ε, let p2 ∈ {

p0|2
}ε. Then, there exists q2 ∈ M(W, 〈Fj〉j) such

that p2 = (1 − ε)p0|2 + εq2. Let q1 ∈ M(W, 〈Ei〉i) and let p = (1 − ε)p0 + ε(q1 × q2). Then,

p ∈ {
p0

}ε and p|2 = (1 − ε)p0|2 + εq2 = p2, and hence, p2 ∈ {
p0

}ε∣∣
2
. �

We now present a result characterizing posterior second-period (marginal) Knightian

uncertainty derived by the two update rules in the case of ε-contamination.

Theorem 1. Let ε ∈ (0, 1) and let E ∈ 〈Ei〉i. Then,

φGB

({
p0

}ε
, E

)
= φML

({
p0

}ε
, E

)
=

{
p0|2(·|E)

}ε′

where

ε′ = ε′(ε,E) ≡ ε

(1 − ε)p0|1(E) + ε
> ε.
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Proof. (a) The GB rule. Define R ⊆ M(W, 〈Fj〉j) by

R =
{

(1 − ε)p0|1(E)
(1 − ε)p0|1(E) + εq1(E)

p0|2(·|E) +
εq1(E)

(1 − ε)p0|1(E) + εq1(E)
q2

∣∣∣∣ q1 ∈ M(W, 〈Ei〉i) ,
q2 ∈ M(W, 〈Fj〉j)

}
.

We first show that

φGB

({
p0

}ε
, E

)
= R . (14)

By definition of φGB , it holds that

φGB

({
p0

}ε
, E

)
=

{
p|2(·|E) | p ∈ {

p0
}ε }

=
{

p(E × ·)
p(E × W )

∣∣∣∣ p ∈ {
p0

}ε
}

(15)

=
{

(1 − ε)p0|1(E)
(1 − ε)p0|1(E) + εq(E × W )

p0|2(·|E) +
ε

(1 − ε)p0|1(E) + εq(E × W )
q(E × ·)

∣∣∣∣ q ∈ M(Ω,F2)
}

,

where we invoked the fact that p0(E × ·) = p0|1(E) · p0|2(·|E). Eq (15) shows that R ⊆
φGB

({
p0

}ε
, E

)
since q1 × q2 ∈ M(Ω,F2).

To show that the opposite inclusion also holds, let p ∈ φGB

({
p0

}ε
, E

)
. Then, there

exists q ∈ M(Ω,F2) such that

p =
(1 − ε)p0|1(E)

(1 − ε)p0|1(E) + εq(E × W )
p0|2(·|E) +

ε

(1 − ε)p0|1(E) + εq(E × W )
q(E × ·)

by (15). When q(E × W ) = 0, it follows that p = p0|2(·|E), and hence, p ∈ R (let q1 be such

that q1(E) = 0 in the definition of R). When q(E × W ) �= 0, let q1 = q|1 and q2 = q|2(·|E),

which is now well-defined, in the definition of R. Then, q1 ∈ M(W, 〈Ei〉i) and q2 ∈ M(W, 〈Fj〉j),
and hence, p ∈ R. Thus we have proved that (14) holds true.

We next show that

{
p0|2(·|E)

}ε′ = R

which completes the proof in the case of the GB rule.

It immediately follows that
{
p0|2(·|E)

}ε′ ⊆ R (let q1 be such that q1(E) = 1). To

show that the opposite inclusion also holds, let p ∈ R. Then, there exist q1 ∈ M(W, 〈Ei〉i) and

q2 ∈ M(W, 〈Fj〉j) such that

p =
(1 − ε)p0|1(E)

(1 − ε)p0|1(E) + εq1(E)
p0|2(·|E) +

εq1(E)
(1 − ε)p0|1(E) + εq1(E)

q2
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= (1 − ε′)p0|2(·|E) + ε′
{
(1 − ε̃)p0|2(·|E) + ε̃q2

}

where

ε̃ =
(1 − ε)p0|1(E)q1(E) + εq1(E)

(1 − ε)p0|1(E) + εq1(E)
.

Since (1 − ε̃)p0|2(·|E) + ε̃q2 ∈ M(W, 〈Fj〉j) by the fact that ε̃ ∈ [0, 1], it follows that p ∈{
p0|2(·|E)

}ε′ as desired.

(b) The ML Rule. We only need to show that
{
p0|2(·|E)

}ε′ ⊆ φML

({
p0

}ε
, E

)
since

the opposite inclusion holds by (a) and the fact that φML ⊆ φGB always holds.

To prove this, first note (see (12)) that (∀E ∈ 〈Ei〉i) we have

({
p0

}ε)∗ (E) =
{

(1 − ε)p0 + εq
∣∣ q ∈ M(Ω,F2) and q(E × W ) = 1

}
,

which in turn implies that

φML

({
p0

}ε
, E

)
=

{
p|2(·|E)

∣∣∣ p ∈ ({
p0

}ε)∗ (E)
}

=
{

(1 − ε)p0|1(E)
(1 − ε)p0|1(E) + ε

p0|2(·|E) +
ε

(1 − ε)p0|1(E) + ε
q(E × ·)

∣∣∣∣ q ∈ M(Ω,F2) and q(E × W ) = 1
}

.

Let p2 ∈ {
p0|2(·|E)

}ε′ . Then, there exists q2 ∈ M(W, 〈Fj〉j) such that p2 = (1 − ε′)p0|2(·|E) +

ε′q2. Let q1 be the element of M(W, 〈Ei〉i) such that q1(E) = 1. Then, q1 × q2 ∈ M(Ω,F2),

(q1 × q2)(E ×W ) = 1 and p2 = (1− ε′)p0|2(·|E) + ε′q1(E)q2(·). Therefore, p2 ∈ φML

({
p0

}ε
, E

)
as desired.

(c) To show ε′ > ε. Since we have assumed that (∀i : i = 1, . . . ,m) p0(Ei × W ) > 0

and m ≥ 2 in Section 3, it follows that (∀i : i = 1, . . . ,m) p0(Ei × W ) = p0|1(Ei) < 1.

Therefore, it holds that ε′ > ε. �

Let us now define a measure of the “informational value” of the observation E with

respect to p0, the “pre-contamination” probability measure. Let E ∈ 〈Ei〉i and let δ (E) ∈ [0, 1]

be defined by

δ (E) = max
j=1, ... ,n

∣∣ p0|2(Fj |E) − p0|2(Fj)
∣∣ .
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The real number δ (E) is the maximum of the “probability change” due to the observation E

with respect to the pre-contamination probability measure p0, which can be considered as a

measure of the informational value of the observation E for p0.

The next theorem shows that, if ε, the degree of contamination of p0, is sufficiently large

with respect to δ (E), the observation E’s information value with respect to p0, then the dilation

takes place.

Theorem 2. Let P be given by
{
p0

}ε and let E ∈ 〈Ei〉i. Suppose that the degree of contamina-

tion of p0 is sufficiently large compared with the informational value of the observation E with

respect to p0, that is, suppose that the following inequality holds:

ε >
p0|1(E)

(1 − p0|1(E)) minj p0|2(Fj)
δ (E) . (16)

Then, the dilation occurs in the sense that it holds that
 φGB

({
p0

}ε
, E

)
= φML

({
p0

}ε
, E

)
=


 {

p0|2(·|E)
}ε′ ⊃ {

p0|2
}ε


 =

{
p0

}ε∣∣
2


 ,

where the inclusion is strict and ε′ is as defined in Theorem 1.

Proof. Note that the two equalities in the left-hand side were established by Theorem 1 and

the equality in the right-hand side was established by Lemma 2, and hence, the theorem claims

that the strict inclusion holds.

We first prove
{
p0|2(·|E)

}ε′ ⊇ {
p0|2

}ε, and then shows that inclusion is strict.

(a) Proof of
{
p0|2(·|E)

}ε′ ⊇ {
p0|2

}ε
. Let p2 ∈ {

p0|2
}ε. Then, there exists q2 ∈

M(W, 〈Fj〉j) such that p2 = (1 − ε)p0|2 + εq2. Therefore, we have

p2 = (1 − ε′)p0|2(·|E) + ε′
(

1 − ε

ε′
p0|2 − 1 − ε′

ε′
p0|2(·|E) +

ε

ε′
q2

)
(17)

= (1 − ε′)p0|2(·|E) + ε′µ ,

where

µ ≡ 1 − ε

ε′
p0|2 − 1 − ε′

ε′
p0|2(·|E) +

ε

ε′
q2 .
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It immediately follows that µ is an (additive) signed measure such that µ(φ) = 0 and µ(W ) = 1.

If µ ≥ 0, then µ ∈ M(W, 〈Fj〉j) and hence p2 ∈ {
p0|2(·|E)

}ε′ implying
{
p0|2(·|E)

}ε′ ⊇ {
p0|2

}ε.

In the remaining of this subsection, we prove that µ ≥ 0. Note that if

(∀F ∈ 〈Fj〉j) 1 − ε

ε′
p0|2(F ) − 1 − ε′

ε′
p0|2(F |E) ≥ 0 ,

then we have µ ≥ 0 since q2 ≥ 0. Therefore, it is sufficient to show the above relation.

If δ (E) = 0, it is straightforward to show

1 − ε

ε′
p0|2(F ) − 1 − ε′

ε′
p0|2(F |E)

=
1 − ε

ε′
(
p0|2(F ) − p0|2(F |E)

) − ε − ε′

ε′
p0|2(F |E)

=
ε′ − ε

ε′
p0|2(F |E) ≥ 0 ,

since δ (E) = maxj

∣∣ p0|2(Fj |E) − p0|2(Fj)
∣∣ = 0 and ε′ ≥ ε.

If δ (E) > 0, we have

1 − ε

ε′
p0|2(F ) − 1 − ε′

ε′
p0|2(F |E) (18)

= (1 − ε)
[(

1 − ε

ε
p0|1(E) + 1

)
p0|2(F ) − 1

ε
p0|1(E)p0|2(F |E)

]

≥ (1 − ε)
[(

1 − ε

ε
p0|1(E) + 1

)
p0|2(F ) − 1

ε
p0|1(E)

(
p0|2(F ) + δ (E)

)]

= (1 − ε)
[(

1 − p0|1(E)
)
p0|2(F ) − δ (E)

ε
p0|1(E)

]

≥ (1 − ε)
[(

1 − p0|1(E)
)
min

j
p0|2(Fj) − δ (E)

ε
p0|1(E)

]

> (1 − ε)

[(
1 − p0|1(E)

)
min

j
p0|2(Fj) − δ (E) p0|1(E)

(
p0|1(E)

(1 − p0|1(E)) minj p0|2(Fj)
δ (E)

)−1
]

= 0 ,

where the first equality holds by the definition of ε′; the first inequality holds by the definition

of δ; the second inequality holds by the min operator; and the strict inequality holds by (16)

and the assumptions that δ(E) > 0 and p0|1(E) > 0. This completes the first half of the proof.

(b) Proof of strict inclusion. Let F ∈ 〈Fj〉j be such that p0|2(F ) > 0 and let

p̂2 ∈ {
p0|2(·|E)

}ε′ be such that p̂2(F ) = (1 − ε′)p0|2(F |E). We show p̂2 /∈ {
p0|2

}ε.
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If δ (E) = 0, we have for any p2 ∈ {
p0|2

}ε

p2 (F ) ≥ (1 − ε)p0|2(F )

= (1 − ε′)p0|2(F ) + (ε′ − ε) p0|2(F )

> (1 − ε′)p0|2(F )

= (1 − ε′)p0|2(F |E) = p̂2(F ) ,

where the strict inequality holds since ε′ > ε (Theorem 1) and p0|2(F ) > 0 by the assumption

of F , and its next equality holds since p0|2 (F ) = p0|2(F |E) by the assumption that δ(E) = 0.

Therefore, we have p̂2 /∈ {
p0|2

}ε.

If δ (E) > 0, we have for any p2 ∈ {
p0|2

}ε

p2(F ) ≥ (1 − ε′)p0|2(F |E) + ε′
(

1 − ε

ε′
p0|2(F ) − 1 − ε′

ε′
p0|2(F |E)

)

> (1 − ε′)p0|2(F |E) = p̂2(F )

where the first inequality follows (17) and the second is implied by (18). Consequently, we have

p̂2 /∈ {
p0|2

}ε. �

This theorem shows that the dilation occurs when the degree of confidence in p0 is small

(i.e., ε is large) compared with the informational value of the observation with respect to p0

(i.e., δ (E)).

An important special case is the one in which we have p0 = p0
1 ⊗ p0

2 for some p0
1 ∈

M(W, 〈Ei〉i) and p0
2 ∈ M(W, 〈Fj〉j), that is, p0 is a product of two probability measures. An

example of this case is analyzed in Section 2. In this example, there is no informational value in

observation E with respect to p0. To see this, note that we have p0|2(Fj |E) = p0|2(Fj) = p0
2(Fj)

for all Fj . It is clear that we have δ (E) = 0 for all events E . Theorem 2 implies the following

corollary in this case.

Corollary 1. Suppose that p0 = p0
1 ⊗ p0

2 for some p0
1 ∈ M(W, 〈Ei〉i) and p0

2 ∈ M(W, 〈Fj〉j).
Also, suppose that P is given by

{
p0

}ε. Then, for any E ∈ 〈Ei〉i, it holds that φGB(
{
p0

}ε
, Ei) =

φML(
{
p0

}ε
, Ei) ⊃ P|2, where the inclusion is strict.



20

Proof. This follows immediately from Thoerem 2 since δ (E) = 0 when p0 = p0
1 ⊗ p0

2 for some

p0
1 and p0

2. �

This corollary shows a striking result. In the case of ε-contamination of a product

of probability measures, the GB rule and even ML rule, which are considered to have some

behavioral foundation and thus to be sensible in the multiple prior framework, actually increase,

rather than decrease, the degree of the Knightian uncertainty. In a sense, new information

worsens the decision-maker’s confused state of confidence, rather than improves it.
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