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1 Setting Up Infinite-Horizon Optimization Problem

We address the following questions, which are solved in the remaining sections.

(1) Let a and b be real numbers (that is, a, b ∈ R) and consider the closed interval [a, b]. More

precisely, [a, b] := {c ∈ R | a ≤ c ≤ b}. Also, let g : [a, b] → R be a concave and differentiable

function (both the right-derivative at a and the left-derivative at b exist). Characterize the

maximum of g by using its derivatives. (By the so-called Weierstrass theorem, the maximum

(or the maxima) always exists.)

(2) Let u : R+ → R be a felicity function and assume that u is specified by

(∀c) u(c) = c1−ρ

where ρ ∈ [0, 1). Note that u does not satisfy Inada conditions when ρ = 0. Also, let f : R+ →
R+ be a production function that is nondecreasing, concave, differentiable on its domain and

satisfying f(0) = 0.

Then, consider the problem of maximizing

U(0c) = U(c0, c1, c2, . . .) := lim
t→+∞

u(c0) + βu(c1) + β2u(c2) + · · ·+ βtu(ct)

over the set of all consumption streams in the feasible set{
0c ∈ R∞

+

∣∣ (∃1x ∈ R∞
+

)
c0 + x1 = f(x0) and (∀t ≥ 1) ct + xt+1 = f(xt)

}
,

given β ∈ (0, 1) and x0 > 0. Note that the limit always exists although it may be positive

infinity.

(2-1) Derive the Euler equations for this problem. Since u may not satisfy Inada conditions,

the equations may be inequalities in fact. Use (1) in such a case.

(2-2) Specify f by (∀x) f(x) = γx, where γ > 0. Determine whether an optimal consumption

stream exists. If so, determine which feasible consumption streams satisfy the Euler equations,

and then, determine which of these streams satisfy the transversality condition. On the basis
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of this information, derive the set of optimal streams. Conclude by determining the true value

function.

The functional form of your answer will depend on the parameters β, γ and ρ. For instance,

the assumption ρ > 0 leads to a case which is very different from the case specified by ρ =

0. Accordingly, break the problem into cases defined by the assumptions you place on the

parameters.

(2-3) Specify f by (∀x) f(x) = xα, where α ∈ (0, 1). Repeat the exercises of Question (2-

2). That is, determine whether an optimal consumption stream exists. If so, determine which

feasible consumption streams satisfy the Euler equations, and then, determine which of these

streams satisfy the transversality condition. On the basis of this information, derive the set of

optimal streams. Conclude by determining the true value function. (Break the problem into

cases because functional forms depend on parameters.)

2 The Kuhn-Tucker Theory

Assume that a < b. (Otherwise, the problem would be trivial.) Then, the problem will be

restated formally as

max g(x) subject to x ≥ a and x ≤ b .

Let L(x;λ1, λ2) be the Lagrangian defined by

L(x;λ1, λ2) = g(x) + λ1(x− a) + λ2(b− x) .

Since g is assumed to be concave, the necessary and sufficient conditions for x∗ to be optimal is

as follows: (∃λ∗
1, λ

∗
2)

∂L

∂x

∣∣∣∣
(x;λ1,λ2)=(x∗;λ∗

1,λ
∗
2)

= g′(x∗) + λ∗
1 − λ∗

2 = 0 (1)

λ1(x
∗ − a) = 0 and λ2(b− x∗) = 0 (2)

λ∗
1 ≥ 0 and λ∗

2 ≥ 0 (3)

x∗ − a ≥ 0 and b− x∗ ≥ 0 . (4)

If (x∗;λ∗
1, λ

∗
2) is an optimum, it satisfies (1) - (4). Furthermore, if it satisfies (1) - (4), it must

be an optimum. (To be precise, for (1) - (4) to become necessary conditions for the optimal-

ity, we need the so-called constraint qualification. There are many versions of the constraint

qualification and I totally ignore this thing in this answer key.)

Conditions (2) are known as the complementary slackness. Conditions (3) require that the

Lagrange multipliers should be non-negative. Conditions (4) are simply the original constraints.
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The lagrange multiplier λ1 is the “shadow price” of a in the sense that if the constraint x ≥ a

will be slack slightly, that is, when a decreases, the optimized value of g will be increased by λ1.

A similar interpretation holds for λ2.

You may casually restate these conditions without using λ’s like x∗ is optimal if g′(x∗) =

0 and a < x∗ < b or g′(x∗) ≤ 0 and x∗ = a or g′(x∗) ≥ 0 and x∗ = b. I am afraid, though,

that you would get stuck in what follows if you did this.

(By the way, I have wrote quite a good lecture note about the Kuhn-Tucker theory, that is,

something about the necessity and the sufficiency of the above conditions for the optimality,

and I am looking for somebody who may typeset this note by TEX.)

3 The Euler Equations

In this section, assume that the value function for this problem exists and is finite-valued.

Otherwise, the following argument would not make any sense. If the optimal consumption path

may attain the utility of the positive infinity, we discuss that case separately.

The Bellman’s equation for this problem is given by

V (xt) = max { u (f(xt)− xt+1) + βV (xt+1) | 0 ≤ xt+1 ≤ f(xt) } ,

which is differentiable by the Benveniste-Scheinkman Theorem. In order to derive the first-order

necessary condition for the maximization problem defining V , let L be the Lagrangian:

L(xt, xt+1) = u (f(xt)− xt+1) + βV (xt+1) + λx
t xt+1 + λc

t(f(xt)− xt+1) .

Then, Condition (1) for this maximum problem is

∂L

∂xt+1
= −u′(ct) + βV ′(xt+1) + λx

t − λc
t = 0 . (5)

Here, λx
t is the shadow price corresponding to the constraint: xt+1 ≥ 0, and λc

t is the shadow

price corresponding to the constraint: ct = f(xt) − xt+1 ≥ 0. Importantly, I admit that the

maximum may take place at the “corners.” Equation (5) holds with an equality , and if the

interiority of the maximum is guaranteed, say, by the Inada conditions, Equation (5) then turns

out to be

−u′(ct) + βV ′(xt+1) = 0 . (6)

Otherwise, the equality in (6) would never be guaranteed. (We know that λx
t , λ

c
t ≥ 0 by (3).

But, this can’t determine the direction of the inequality that would arise when the “corner”

solutions were the case.)

By the envelop theorem, it holds that

V ′(xt) =
∂L(xt, xt+1)

∂xt
= u′(ct)f

′(xt) + λc
tf

′(xt) . (7)
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Note that the derivative of the value function is the current , not present, shadow price of the

capital stock xt, that is, the marginal value of xt in the unit of utility that is measured at time

t. We denote it by λt, and thus, V ′(xt) = λt. By proceeding time for one period in Equation

(7), we have reached

V ′(xt+1) = u′(ct+1)f
′(xt+1) + λc

t+1f
′(xt+1) =

(
u′(ct+1) + λc

t+1

)
f ′(xt+1) = λt+1 , (8)

from which, together with Equation (5), we get

−u′(ct) + β
(
u′(ct+1) + λc

t+1

)
f ′(xt+1) + λx

t − λc
t = 0 ,

which may be rearranged to finally obtain THE Euler equation:

u′(ct) + λc
t = β

(
u′(ct+1) + λc

t+1

)
f ′(xt+1) + λx

t . (9)

Because the shadow prices may not be zero in general, the Euler equality does not hold with an

equality when we dispense with shadow prices. Thus, the Euler equation is the Euler inequality

in general (if we don’t use the shadow prices). While we know that the shadow prices are

non-negative by (3), this fact does not determines the direction of the inequality in the Euler

inequality.

4 General Remarks

Under the differentiability assumptions, the optimality and the finiteness of the utility along

the optimal path imply that the Euler equation must hold. On the other hand, the concavity,

the Euler equations, the transversality condition and the lower-convergence imply that the path

is certainly an optimum. (This is exactly what I proved in the class.) Note that the lower-

convergence is automatically satisfied by all the models in this problem set.

Furthermore, if the upper-convergence is satisfied, an optimum must exist. (This is exactly what

the handout I distributed in the class shows, which is based on Ozaki and Streufert, 1996.) Note

that the upper-convergence is equivalent to the finiteness of the utility when the utility function

is time-separable as in this problem set. (See Streufert, 1990.)

5 The Model with Linear Production Function: F (x) = γx

In this case, an economy may grow without a bound. We divide this case into the two sub-cases.

5.1 The Case Where ρ = 0

In this case, the Inada condition is not met, and hence, a solution may take place at the “corners.”

We further divide this case into the three sub-cases.
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5.1.1 βγ > 1

See the case of βγ1−ρ > 1 below. (Set ρ = 0 there.) The value function is given by J∗(x) = +∞.

5.1.2 βγ = 1

In this case, any feasible consumption path attains the identical utility number given by γx0,

and hence, the value function is given by J∗(x) = γx. I could show that any feasible path

satisfies both the Euler equations and the transversality condition. Therefore, any feasible path

is in fact an optimum. It seems boring to me doing all this and I skip it.

5.1.3 βγ < 1

In this case, the optimal consumption path is (γx0, 0, 0, . . .), obtaining the utility number of

γx0. This is the unique optimum since you would get worse if you chose any other feasible

consumption path. Thus, the value function is J∗(x) = γx. I could show that the path,

(γx0, 0, 0, . . .), satisfies both the Euler equations and the transversality condition. Therefore,

the path is in fact the optimum. It seems boring to me doing all this and I skip it again.

5.2 The Case Where ρ ∈ (0, 1)

We further divide this case into the three sub-cases.

5.2.1 βγ1−ρ > 1

Let θ ∈ (0, 1). Then, consider the path define by

(∀t ≥ 0) ct = (1− θ)γxt and xt+1 = θγxt .

Note that this is a path that is feasible from x0 under the current technology. Then, the utility

is now given by

U(c) = ((1− θ)γx0)
1−ρ + β ((1− θ)γθγx0)

1−ρ + β2
(
(1− θ)γ (θγ)2 x0

)1−ρ
+ · · ·

= ((1− θ)γx0)
1−ρ

(
1 + β (θγ)1−ρ + β2

(
(θγ)2

)1−ρ
+ · · ·

)
= ((1− θ)γx0)

1−ρ

(
1 + β (θγ)1−ρ +

(
β (θγ)1−ρ

)2
+ · · ·

)
.

Therefore, the utility is +∞ if and only if

β (θγ)1−ρ ≥ 1 ,
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which in turn is equivalent to

θ ≥ 1

β1/(1−ρ)γ
=

(
1

βγ1−ρ

)1/(1−ρ)

where the last term is less than 1 by the assumption of βγ1−ρ > 1. We conclude that we can

attain +∞ as the utility number by choosing θ so that

θ ∈
[

1

β1/(1−ρ)γ
, 1

)
.

Thus, you can find uncountably many feasible consumption paths that attain the positive infinity

as a utility number. Therefore, there exist uncountably many optima and the value function is

given by J∗(x) = +∞.

5.2.2 βγ1−ρ = 1

Because β < 1, this case occurs only when γ > 1. Then, γ1−ρ < γ since ρ ∈ (0, 1). Thus, we

conclude that βγ > 1 in this case.

Define the consumption path ct by ct = (0, . . . , 0, γt+1x0, 0, . . . , ) where ct = γt+1x0. Note

that ct is certainly feasible from x0. Then, U(ct) = βtct = (βγ)t γx0. Therefore, we see that

limt→∞ U(ct) = +∞ since βγ > 1.

I do not know whether or not there exists a feasible consumption path that attains the positive

infinity exactly. Depending on this, the value function either is given by J∗(x) = +∞ (when

such a path exists) or does not exist (when such a path does not exist). (The Euler equation is

irrelevant now since the finiteness is now violated.)

5.2.3 βγ1−ρ < 1

First note that any feasible consumption path generates a (finite) utility that is uniformly less

than some constant. (You can spell out this constant easily by calculating U(γx0, γ
2x0, . . .).)

Also, note that the Inada condition is now met. Therefore, the Euler equation turns out to be

u′(ct) = βu′(ct+1)f
′(xt+1) . (10)

Under the current specifications of u and f , this is identical to

c−ρ
t = βγc−ρ

t+1

that leads to
ct+1

ct
= (βγ)1/ρ . (11)

Any optimal consumption path must solve this first-order difference equation.
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From the feasibility conditions, x1 = γx0 − c0. Then,

x2 = γx1 − c1 = γ2x0 − γc0 − c1 = γ2x0 − γc0 − (βγ)1/ρ c0

where the last equality is derived by the Euler equation. Furthermore,

x3 = γx2 − c2 = γ3x0 − γ2c0 − γ (βγ)1/ρ c0 − c2 = γ3x0 − γ2c0 − γ (βγ)1/ρ c0 −
(
(βγ)1/ρ

)2
c0 .

By induction, we have

xt = γtx0 −

(
t∑

i=1

γt−i
(
(βγ)1/ρ

)i−1
)
c0

= γtx0 − γt−1

(
t∑

i=1

((
βγ1−ρ

)1/ρ)i−1
)
c0

= γt−1

γx0 −

1−
((

βγ1−ρ
)1/ρ)t

1− (βγ1−ρ)1/ρ

 c0


Thus, the transversality condition turns out to be

0 = lim
t→∞

βtλtxt

= lim
t→∞

βtu′(ct)f
′(xt)xt

= lim
t→∞

βt(1− ρ)c−ρ
t γxt

= lim
t→∞

βt(1− ρ)

((
(βγ)1/ρ

)t
c0

)−ρ

γxt

= lim
t→∞

βt(1− ρ)

((
(βγ)1/ρ

)t
c0

)−ρ

γ · γt−1

γx0 −

1−
((

βγ1−ρ
)1/ρ)t

1− (βγ1−ρ)1/ρ

 c0


= lim

t→∞
(1− ρ)c−ρ

0

γx0 −

1−
((

βγ1−ρ
)1/ρ)t

1− (βγ1−ρ)1/ρ

 c0


= (1− ρ)c−ρ

0

(
γx0 −

(
1−

(
βγ1−ρ

)1/ρ)−1
c0

)
.

Therefore, the transversality condition implies that

c∗0 =
(
1−

(
βγ1−ρ

)1/ρ)
γx0 .

Since the Euler equation and the trasversality condition characterize the optimal path, the

consumption path defined by c∗ = (c∗0, c
∗
1, c

∗
2, . . .), where, for t ≥ 1, c∗t is defined by c∗0 and the

Euler equation, is certainly the optimum.

I did not show the necessity of the transversality condition for the optimality in my lecture, and

I don’t know if there might exist another optimal consumption path or not.
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The value function is given by

J∗(x) =
∞∑
t=0

βt(c∗t )
1−ρ =

∞∑
t=0

βt
(
(βγ)1/ρ

)t
c∗0 =

(
1−

(
βγ1−ρ

)1/ρ)−ρ
γ1−ρx1−ρ

0 .

Note that the optimal consumption path is steadily growing whenever

1

β
< γ <

(
1

β

)1/(1−ρ)

,

where the second inequality holds by the assumption of this subsection. The whole inequalities

define the nonempty open interval since 1/β > 1 and ρ ∈ (0, 1).

6 The Model with Concave Production Function: F (x) = xα

Note that the production function intersects the 45-degree line and thus the utility function over

the feasible set is bounded given x0 since the consumer discounts the future (β ∈ (0, 1)).

6.1 The Case Where ρ = 0

The Inada condition is not satisfied. Thus, the Euler equation is given by

1 + λc
t = αβ

(
1 + λc

t+1

)
xα−1
t+1 + λx

t (12)

(specify u and f in (9)). (You can not dispense with the shadow prices since some of the

constraints may be binding.)

Let (c̄, x̄) be the steady state that satisfies the Euler equations. That is, ct = ct+1 = c̄ > 0,

xt = xt+1 = x̄ > 0, c̄ + x̄ = x̄α, and 1 = αβx̄α−1. (At the steady state, the shadow prices are

zero since any constraint is not binding there.) From these, we get x̄ = (αβ)1/(1−α) < 1 and

c̄ = (1− αβ)(αβ)α/(1−α).

Assume that x0 < x̄1/α. Let x̂ be the pure-accumulation path. That is, x̂ = (x0, x̂1, x̂2, . . .) =

(x0, x
α
0 , (x

α
0 )

α, . . .). Since lim · · · ((x0)α)α · · · = 1 > x̄, there exists the finite stopping time T

such that

T = min {t ∈ N |x̂αt ≥ x̄} .

Then, define the capital path x∗ by

x∗ = (x0, x̂1, . . . , x̂T−1, x̂T , x̄, x̄, . . .) ,

Finally, define the consumption path c∗ by

c∗ = (0, 0, . . . , 0, x̂αT − x̄, c̄, c̄, . . .) ,
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where c∗T = x̂αT − x̄. (Intuitively, you accumulate until you will have reached the steady state

and then you stay there.)

Note that (c∗,x∗) thus defined satisfies the Euler equation. To see this fact, first note that

(∀t) x∗t > 0 and hence that (∀t) λx
t = 0 by the complementary slackness, (2). Thus, (12) can be

slightly more simplified to

1 + λc
t = αβ

(
1 + λc

t+1

)
xα−1
t+1 . (13)

Second note that c∗T > 0 and thus λc
T = 0 by the complementary slackness, (2). (There is a

possibility that c∗T = 0, but I ignore this.) Therefore, it must be the case that

1 + λc
T−1 = αβ (1 + λc

T ) (x
∗
T )

α−1 = αβ (x∗T )
α−1 .

Then, define λc
T−1 by

λc
T−1 = αβ (x∗T )

α−1 − 1 = αβ (x̂T )
α−1 − 1 > αβ (x̄)α−1 − 1 = 0 .

Then, define λc
T−2 by

λc
T−2 = αβ

(
1 + λc

T−1

) (
x∗T−1

)α−1 − 1 = αβ
(
x∗T−1

)α−1 − 1 = αβ (x̂T−1)
α−1 − 1

> αβ (x̄)α−1 − 1 = 0 ,

and so on. Thus, (c∗,x∗) satisfies the Euler equations.

Furthermore, it clearly satisfies the transversality condition since it is a bounded path. Hence,

we conclude that (c∗,x∗) is certainly the optimum. The value function is given by

J∗(x) = U(c∗) = βT (x̂αT − x̄) + βT+1 c̄

1− β
.

I do not know if there are any other optimal path or not because I did not show that (c∗,x∗)

is the only path that satisfies the Euler equation. In any case, this is an example of economies

where the “turnpike” property holds. (The turnpike property says that it is optimal to get to

the optimal steady state as soon as possible and to stay there as long as possible, in this case,

to stay there forever.)

The case where x0 > x̄1/α can be handled in quite a similar way and I skip it.

6.2 The Case Where ρ ∈ (0, 1)

The Inada condition is now met, and thus, the optimal path is the interior one. The Euler

equation is given by (10) and is reduced to

c−ρ
t = αβc−ρ

t+1x
α−1
t+1 . (14)

Also, from the feasibility condition, it must be the case that

ct + xt+1 = (xt)
α .
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Given x0, these constitute a system of a couple of the first-order difference equations with one

boundary condition. Unfortunately though, I do not know the closed-form solution of this

system unless x0 = x̄ by accident.

What I can say about this problem is that the optimum certainly exists and it satisfies (14).

The latter claim follows immediately since the Euler equation is a necessary condition for the

optimality. The existence of the optimum follows from the upper-convergence (see the 2nd

paragraph of Section 3 above) and the upper-convergence follows since the utility is finite (see

the 2nd paragraph of Section 3 above again).
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