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1 Introduction

Should I go or should I stay? Timing is a key decision in dynamic economic environments

characterized by uncertainty. Consider an unemployed worker who is searching for a job.

She receives a wage offer and decides whether to stop the search or not. The difficulty

lies in uncertainty about the future. Without knowing future payoffs, she must judge

whether this is the good timing to stop the search. This type of decision-making problem,

which is called the optimal stopping problem, is everywhere in economics, not limited

to job search. We aim at contributing to the literature of optimal stopping problems

under ambiguity by relaxing the assumption of uncertainty-aversion in the framework of

a one-sided job search problem.

Suppose that “uncertainty” about labor market conditions has increased. Does this

change induce an unemployed worker to search longer, or shorter? The literature has

shown that the answer depends on the type of uncertainty. On the one hand, when the

worker precisely understands the wage distribution (i.e., the worker faces risk), higher

uncertainty in the sense of a mean-preserving spread encourages the worker to search

longer.

On the other hand, when the worker does not know even the distribution itself, which

is called ambiguity or Knightian uncertainty, higher uncertainty rather induces the worker

to search shorter. That is, the effect of higher ambiguity is in contrast to that of a mean-

preserving spread. This effect was first found by Nishimura and Ozaki (2004). Since

then, subsequent studies have extended this analysis to various situations, such as a

general framework of optimal stopping problems (e.g., Riedel 2009; Miao and Wang 2011;

Chudjakow and Riedel 2013), experimentation (e.g.. Li 2019), a game-theoretic situation

(e.g., Kishishita 2020), and option problems in finance (e.g., Nishimura and Ozaki 2007;

Cheng and Riedel 2013).

Despite such attempts, the role of ambiguity has not been fully understood yet. In

modeling the worker’s decision-making under ambiguity, the existing studies adopt the

Maxmin expected utility (MEU) theory, where she has a set of probabilities and evaluates

the expected utility based on the worst probability (Gilboa and Schmeidler 1989). This

modeling has two shortcomings. First, both the worker’s attitudes toward ambiguity and

the degree of ambiguity itself are represented by the size of the set of priors. Consequently,

we cannot conduct comparative statics concerning the degree of ambiguity, keeping the

ambiguity-attitude fixed. Second, this model assumes that the worker dislikes ambiguity,

which is called uncertainty-aversion. Although this property is motivated by the famous

experiment by Ellsberg (1961), uncertainty-aversion is neither necessary nor sufficient

to explain his paradox (Epstein 1999). Furthermore, massive experimental studies find

that people’s behavior can be both ambiguity-averse and ambiguity-loving depending on

situations (e.g., Kocher, Lahno, and Trautmann 2018). Due to these limitations, the

existing studies cannot answer the following fundamental question: How does the effect

of higher ambiguity depend on the ambiguity-attitude? The contribution of our study is
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to give the complete answer to this unresolved question.

For this purpose, we adopt the Choquet expected utility (CEU) theory (Schmeidler

1989), where the preference is represented by the Choquet integral of utility numbers with

respect to a probability capacity. When the capacity is convex, the worker is uncertainty-

averse, and the preference is equivalent to the MEU, whereas she is uncertainty-loving

when the capacity is concave. Hence, CEU describes a broad class of ambiguity-attitudes.

In particular, we adopt its specific class, which is called CEU with a JP-capacity (Jaffrey

and Philippe 1997).1 This is a class of capacities, which are represented by a convex

combination of a convex capacity and its conjugate (a concave capacity). Thus, the worker

endowed with a JP capacity is characterized by the mixture of uncertainty-aversion and

uncertainty-loving. The weight for the concave capacity, say α, can be interpreted as the

degree of optimism. As such, this capacity allows us to separate ambiguity-attitudes and

the degree of ambiguity.2

By focusing on this class of CEU, we show that the previous finding hinges on the

assumption that the worker is uncertainty-averse. In particular, we find that higher

ambiguity makes the search shorter if the agent is sufficiently pessimistic (i.e., α is close

to zero), while the opposite holds if the agent is sufficiently optimistic (i.e., α is close to

one). Nishimura and Ozaki (2004) focus on convex capacities (i.e., the case where α = 0).

By extending their analysis to a broader class of capacities, we find that the previous

finding holds if and only if the worker is sufficiently pessimistic.

A next natural question would be how economic environments affect the effect of

higher ambiguity. The existing studies have shown that the effect is independent of them

when α = 0. Hence, it might be expected that the economic environments such as the

discount factor do not matter. This is not the case. To see this, we restrict our attention

to a subclass of JP-capacities, which is called neo-additive capacities, whose axiomatic

foundation is given by Chateauneuf, Eichberger, and Grant (2007).3

We show that the effect of higher ambiguity crucially depends on the discount factor as

long as α ∈ (0, 1). In particular, for any positive α, there exists a high discount factor un-

der which more ambiguity makes the search longer. Since longer search is ambiguity-loving

behavior, our result indicates that slight contamination of optimism induces ambiguity-

loving behavior when the agent is sufficiently patient. This result uncovers the overlooked

role of the discount factor in determining the effect of higher ambiguity in optimal stop-

ping problems.

In summary, whether ambiguity about labor market conditions induces shorter search

or not depends on the worker’s ambiguity-attitude. It encourages the worker to stop the

1Eichberger and Kelsey (2014) adopt this class of capacities in the analysis of games under ambiguity.
2CEU with this capacity can be also interpreted as a variant of MEU. In parallel to the relationship

between CEU with a convex capacity and MEU, CEU with a JP capacity can be rewritten as α-Maxmin
expected utility, where preferences are represented by a weighted average of the minimum and the max-
imum expected utility over the set of probabilities.

3This capacity has been widely used in applied researches (e.g., Zimper 2012; Giraud and Thomas
2017; Kishishita and Ozaki 2020).
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search if and only if her degree of optimism is sufficiently low. Furthermore, when the

worker is endowed with a neo-additive capacity, even slight contamination of optimism

leads to ambiguity-loving behaviors when the worker is patient.

In analyzing a dynamic decision-making problem beyond the assumption of uncertainty-

aversion, we face two methodological difficulties. First, ambiguity creates a dynamic in-

consistency problem. In the case of MEU and CEU with a convex capacity, this problem

is easily resolved by assuming the independent and indistinguishable distribution because

it guarantees the rectangular property (Epstein and Schneider 2003a; 2003b). However,

once we depart from uncertainty-aversion, this approach is no longer applicable (Schröder

2011). We resolve this problem by employing recursive preferences, which enables us to

use dynamic programming techniques. This approach is also taken by Beissner, Lin, and

Riedel (2020) in the analysis of a continuous-time consumption and asset pricing model.4

To the best of our knowledge, the present study is one of the first studies to analyze

an optimal stopping problem beyond the assumption of uncertainty-aversion. Recently,

Huang and Yu (2021) analyze a different class of optimal stopping problems in continuous

time by adopting α−MEU preferences. Their approach is to allow dynamic inconsistency

and model decision-making as a game between the present self and the future self. They

do not conduct comparative statics with respect to the degree of ambiguity.5

The second difficulty lies in the dynamic programming theory. Whether standard

dynamic programming techniques are applicable to the situation under ambiguity is not

straightforward. Nishimura and Ozaki (2004) show that the dynamic programming tech-

niques are applicable in a quite general setting where the state space in each period could

be unbounded by relying the convexity of a capacity.6 We show that their techniques can

be extended to non-convex capacities. We provide a rigorous theoretical foundation for

how we can apply dynamic programming techniques when the agent is not necessarily

uncertainty-averse.

The remainder of the paper is organized as follows. Section 2 presents a motivating

example. Section 3 provides a formal model and Section 4 characterizes the optimal

decision. Sections 5 and 6 conduct comparative statics. Section 7 concludes.

4See also Saghafian (2018) as another study of a dynamic decision-making problem in the class of
α−MEU preferences.

5A continuous-time irreversible investment problem (a different class of optimal stopping problems) is
introduced but not solved by Schröder (2011) in the class of α−MEU preferences. Due to the dynamic
inconsistency problem, he solves the problem only for extreme cases where α = 0, 1. For intermediate
values of α, he assumes that the investor faces an all-or-nothing decision: if the investor does not invest
in period t, he cannot investment forever. That is, the investor’s decision is only once (i.e., it is not
dynamic), which is in contrast to optimal stopping problems.

6Allowing the unboundedness is important especially for other applications of search problems such as
in finance. For a bounded or finite state space, some studies develop the dynamic programming techniques
by applying the contraction mapping theorem (e.g., Miao and Wang 2011, Saghafian 2018).
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2 A Motivating Example

As a motivating example, we consider a simple one-sided job search model with t = 0, 1, ....

In each period, an unemployed worker draws a wage offer, w, from a wage distribution

F .7 If the unemployed worker accepts the offer, she earns that wage from this period. If

she decides to reject the offer, she gets unemployment compensation, c > 0, in this period

and will make a draw again in the next period. The discount factor is β ∈ (0, 1).

The optimal stopping rule is to accept the wage offer if it is no smaller than the reser-

vation wage R∗ and to wait for another offer if otherwise. Furthermore, the reservation

wage R∗ is determined by a choice between accepting this period’s offer or waiting for the

next period’s offer. In particular, when there is no ambiguity,

R∗

1− β
= c+

β

1− β

(∫ R∗

0

R∗ dF +

∫ ∞
R∗

x dF

)
,

where the left-hand side is the utility when accepting the current wage offer, and the

right-hand side is the utility when continuing the search. At the reservation wage, these

two must be equalized. By rewriting this equality, we get

R∗ = c+
β

1− β

∫ ∞
R∗

[1− F (x)] dx, (1)

which characterizes the reservation wage.

We next introduce ambiguity into this setup. That is, we allow the worker to face

uncertainty about the true distribution F . To describe decision-making under ambiguity,

we adopt the Choquet expected utility (CEU), where the worker evaluates the expected

utility by using not a probability measure but a probability capacity, θ̂. Under this setting,

the analogy of (1) holds; that is,

R∗ = c+
β

1− β

∫ ∞
R∗

θ̂({w ≥ x}) dx (2)

(see Corollary 1).

To examine the effect of ambiguity further, we specify the capacity θ as follows: for

any E /∈ W ∪ ∅,
θ̂(E) := (1− ε)π(E) + εα ,

where π is a probability measure, ε ∈ (0, 1), and α ∈ [0, 1]. This is called a neo-additive

capacity, whose axiomatic foundation is given by Chateauneuf, Eichberger, and Grant

(2007). The CEU with a neo-additive capacity has a remarkable feature as seen in the

following equivalence:∫
f(w)dθ̂ = αmax

p∈D

∫
f(w) dp+ (1− α) min

p∈D

∫
f(w) dp ,

7F (x) denotes the probability that the wage offer is no greater than x.
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where

D = {p ∈ ∆(W )| (∀E) p(E) ≥ (1− ε)π(E)}.

On the one hand, an increase of ε leads to the dilation of D (the set of probability

measures), and hence, its increase can be interpreted as an increase of the degree of

ambiguity. On the other hand, α may be understood as the degree of optimism because

it represents the weight for the best-case payoff. As such, the ambiguity itself and the

players’ attitudes toward it are successfully separated.

When we restrict our attention to this class of capacities, (2) can be further simplified

to

R∗ = c+
β

1− β

∫ ∞
R∗

(1− ε)π ({w |w ≥ x}) dx+
β

1− β

∫ ∞
R∗

αε dx , (3)

where the last term is +∞ and is not well-defined yet.

To let equality (3) make sense (as well as by the motivation of getting a simple

example), we assume that according to the principal probability measure π, the wage

offer w should follow the uniform distribution with its support given by [a, b], where

0 ≤ a ≤ c < b < +∞ so that π ({w |w ≥ x}) = (b− x)/(b− a). Finally, we then obtain

R∗ = c+
β

1− β

[
(1− ε)(b−R∗)2

2(b− a)
+ αε(b−R∗)

]
. (4)

Note that R∗ < b (see Lemma A.6).

2.1 The Exact Form of the Reservation Wage R∗

We have derived the equation, i.e., Equation (4), the reservation wage R∗ must satisfy

when the unemployed worker believes that the ambiguity she faces is characterized by the

neo-additive capacity with the principal probability measure being the uniform distribu-

tion over [a, b].

By noting that Equation (4) is a quadratic equation,8 we can solve it to find the exact

form of R∗:

R∗ =
1

1− ε

[
b(1− ε) + (b− a)αε+ (b− a)

1−
√
D

β̂

]
, (5)

where β̂ := β/(1− β) ∈ (0,+∞) and

D := 1 +
2β̂

b− a
(1− ε)(b− c) + 2αβ̂ε+ α2β̂2ε2 .

Note that it can be verified that R∗ ∈ (c, b) (see Appendix A.1).

Before proceeding further, we make two important observations about the reservation

8The other solution of the quadratic equation, name it R, can be obtained if we set the sign right
before the square root as plus. However, such an R would be greater than b and thus it is not plausible
as a reservation wage of the current model.
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wage R∗ here.

The first one is regarding the effect of α. From (5), we can show by a direct compu-

tation that

dR∗(α)

dα
=

ε(b− a)

1− ε

 1−

√√√√ 1 + 2αβ̂ε+ α2β̂2ε2

1 + 2β̂(1− ε) b−c
b−a + 2αβ̂ε+ α2β̂2ε2


> 0 ,

where the positivity holds true because 2β̂(1 − ε)(b − c)/(b − a) > 0. Recall that the

parameter α measures the degree of the worker’s optimism, and hence, its increase urges

her to anticipate a “better” wage offer in the future, which should be reflected by the

higher reservation wage, R∗.

The second observation concerns the behavior of R∗ with respect to the discount factor,

β. Let α ∈ (0, 1) be arbitrarily fixed. We observe that by varying the value of β within

(0, 1), equivalently, by varying the value of β̂ within (0,+∞), R∗ can become as close as

possible to b (from below). Now, let β ↑ 1, which corresponds to β̂ ↑ +∞. If we look at

a relevant part of (5), (1−
√
D)/β̂, its “limit” as β̂ ↑ +∞ will be −∞/+∞, which is an

indeterminate expression, and thus, we can invoke l’Hôpital’s rule to find out its limit.

Therefore,

lim
β̂ ↑+∞

1−
√
D

β̂
= lim

β̂ ↑+∞
− ∂

∂β̂

√
D

= −αε , (6)

the last term of which can be plugged back to (5) to obtain

R∗ =
1

1− ε
[ b(1− ε) + (b− a)αε− (b− a)αε ] = b .

We thus conclude that R∗ can be made as close as possible to b (from below) by means

of letting β as large and close as possible to 1. In addition, we can also easily verify that

R∗ goes to c as β goes to zero.

2.2 Comparative Statics with Respect to an Increase in Ambi-

guity

We conclude this section by conducting comparative statics with respect to an increase

in ambiguity.

To this end, suppose that ambiguity increases. In the current setup, it corresponds to

an increase in ε.

We regard (4) as an identity of ε and take a differentiation of its both sides. After
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some rearrangement of terms, we obtain

dR∗(ε)

dε
= − β(b−R∗) (b−R∗ − 2α(b− a))

2(b− a)(1− β + αβε) + 2β(1− ε)(b−R∗)
. (7)

Given thatR∗ < b from an observation made in the previous subsection, it is immediate

that
dR∗(ε)

dε
< 0 ⇔ b−R∗(α, β) > 2α(b− a) , (8)

where we emphasized the fact that R∗ depends on both α and β in ways clarified by a

series of observations in the previous subsection.

The equivalence relation (8) tells us two interesting results on the comparative statics.

By the first observation in the previous subsection, we know that R∗ is increasing in α.

Thus, there exists a threshold of α, say ᾱ, such that once that α exceeds ᾱ, (8) never

happens again. Therefore, we obtain the following result.

Result 1. On the one hand, if the worker is optimistic in the sense that her α exceeds ᾱ,

an increase in ambiguity increases the reservation wage. On the other hand, if the

worker is pessimistic in the sense that her α is beneath ᾱ, an increase in ambiguity

reduces the reservation wage.

Nishimura and Ozaki (2004) show that higher ambiguity always decreases the reservation

wage when α = 0. By extending the analysis to the cases where α 6= 0, we find that it

increases the reservation wage when α is close to one.9

Next, consider the role of the discount factor. Assume that α ∈ (0, 1). Then, by the

second observation in the previous subsection, R∗ can be made as close as possible to b

by means of letting β as close as possible to 1. Note also that R∗ is increasing in β (see

Appendix A.1). Hence, we obtain the following result.

Result 2. For any α ∈ (0, 1), there exists a threshold value β̄ ∈ [0, 1) such that an

increase in ambiguity increases the reservation wage if and only if β > β̄.10

That is, as long as the worker is not fully pessimistic, we can make higher ambiguity

increase the reservation wage by letting the worker sufficiently patient. In other words,

ᾱ converges to zero as β goes to one. Even if α is close to zero, the worker may rather

increase the reservation wage when the discount factor is close to one.

9Note that higher ambiguity could have the same effect independently of ambiguity-attitude in certain
situations (e.g., Kishishita and Ozaki 2020). In contrast, the current result indicates that the effect of
higher ambiguity is heterogeneous depending on ambiguity-attitudes in the case of an optimal stopping
problem.

10R∗ goes to c as β goes to zero (see Appendix A.1). Hence, β̄ > 0 as long as

b− c > 2α(b− a)⇔ α <
b− c

2(b− a)
.
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Although these are interesting findings, the current motivating example has several

drawbacks. First, it lacks some theoretical rigors; deriving (2) as an analogy to the risk

case is not trivial at all. For this purpose, we need to develop dynamic programming

techniques. Second, the comparative statics results depend on various assumptions on

capacities. As a result, its generalizability is uncertain. In the following sections, we

resolve these problems one by one and provide the complete view on the effect of higher

ambiguity in the one-sided search problem.

(a) a = 0, b = 1, c = 0 (b) a = 1, b = 2, c = 1.2

Figure 1: Effect of higher ambiguity. Notes: Each figure compares the values of R∗ between
the case with ε = 0 and the case with ε = 0.1. In the blue region, the former value
is greater than the latter one, corresponding to pessimistic search behaviors.

3 The Formal Model

3.1 Stochastic Environment

Let (W,BW ) be a measurable space, where W is a Borel subset of R+ and BW is the

Borel σ-algebra on W . Note that W does not have to be bounded. We regard each

element w ∈ W as an offer of wage in each single period. For any t ≥ 0, we construct

the t-dimensional product measurable space (W t,BW t) (we let BW 0 := {φ,W∞}) and

embed it in the infinite-dimensional product measurable space (W∞,BW∞) as follows.

First, let W∞ = W × W × · · · be the countably infinite Cartesian product of W

with itself, and let W t = w × · · · ×W be the (t − 1)-time Cartesian product of W with

itself. That is, W∞ is the set of infinite sequences (w1, w2, . . .), and W t is the set of finite

sequences (w1, w2, . . . , wt), where (∀i) wi ∈ W .

Second, let Bw∞ be the σ-algebra on W∞ generated by the family of sets of the form

E1×E2×· · · , and let B(W t) be the σ-algebra on W t generated by the family of sets of the

form E1× · · · ×Et, where for each i, Ei ∈ BW ; that is, Ei is a Borel set. Because W is a
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separable metric space, B(W t) is identical to (BW )t := BW ⊗ · · · ⊗BW , the (t− 1)-time

product measurable space of BW .

Third and finally, we define the σ-algebra B̂W t on W∞ (not on W t) as the σ-algebra

generated by the family of cylinder sets E1 × · · · ×Et ×W ×W × · · · , where (∀i) Ei is a

Borel set. In particular, B̂W 0 := {φ,W∞} represents no information. Then, any function

define on W∞ that is B̂W t-measurable takes on the same value given the realization of

(w1, w2, . . . , wt) regardless of the realization of (wt+1, wt+2, . . .); hence, it can be identified

with the function defined on B(W t). In this manner, we embed B(W t) in B̂W t . Therefore,

we do not distinguish these two objects and use the notation BW t to represent both. This

convention is convenient when consider stopping rules that are defined on W∞. We write

a history of realized offers as 1wt := (w1, w2, . . . , wt) ∈ W t, 1w := (w1, w2, . . .) ∈ W∞,

and so on.

3.2 Capacitary Kernel

We adopt CEU in describing a worker’s decision-making under ambiguity. In this frame-

work, beliefs, ambiguity, and ambiguity-attitude are represented as capacities. This sub-

section defines a capacitary kernel the worker employs when she evaluates uncertain future

wage offers. See Appendix C for the basic concepts and properties of CEU.

3.2.1 Preliminaries

Let θ be a capacitary kernel ; that is, let θ : W ×BW → [0, 1] be a function such that

(∀w ∈ W ) θw is a probability capacity on (W,BW ) and (∀E ∈ BW ) θ·(E) is BW -

measurable.

As a preliminary, we introduce several concepts about θw. The first concept is the

convexity, which is defined as follows:

Definition 1 θw is convex if

(∀A,B ∈ BW ) θw(A ∪B) + θw(A ∩B) ≥ θw(A) + θw(B) .

When an agent is a CEU maximizer with a capacity θ, the agent is uncertainty-averse if

and only if θ is convex (Schmeidler 1989). Note that θw is concave if for all A and B,

θw(A ∪ B) + θw(A ∩ B) ≤ θw(A) + θw(B). In contrast to a convex capacity, a concave

capacity implies uncertainty-loving.

The next concept is the continuity, which is defined as follows. The importance of this

property will be explained in the next subsection.

Definition 2 θw is continuous if the following two conditions hold:

(∀ 〈Ai〉i ⊆ BW ) A1 ⊆ A2 ⊆ A3 ⊆ ...⇒ θ(∪iAi) = lim
i→∞

θ(Ai) .
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(∀ 〈Ai〉i ⊆ BW ) A1 ⊇ A2 ⊇ A3 ⊇ ...⇒ θ(∩iAi) = lim
i→∞

θ(Ai) .

A capacitary kernel θ is convex (resp. continuous) if (∀w) θw is convex (resp. contin-

uous). Throughout this paper, we keep to assume:

Assumption 1 The capacitary kernel θ is convex and continuous.

We define the conjugate of θ, denoted θ′, by (∀w)(∀E) θ′(E)w := 1−θw(Ec), where Ec

denotes the complement of E in W . It immediately turns out that θ′ is concave because

θ is assumed to be convex.

3.2.2 JP-Capacities

We aim to model both ambiguity-averse and ambiguity-seeking behaviours. To this end,

we focus on the class of JP-capacities, which was first introduced by Jaffrey and Philippe

(1997).

Assumption 2 Our agent in this paper is exclusively endowed with the capacitary kernel,

denoted θ̂α, which is defined by

(∀w ∈ W )(∀E ∈ BW ) θ̂αw(E) := αθ′w(E) + (1− α)θw(E) , (9)

where α ∈ [0, 1].

As discussed in the above, θw is convex and represents uncertainty-aversion, whereas

θ′w is concave and represents uncertainty-loving. Hence, the worker endowed with a JP

capacity is characterized by the mixture of uncertainty-aversion and uncertainty-loving,

and the weight for uncertainty-loving is α. That is, α is interpreted as a parameter

measuring the degree of optimism of the worker.11 Note that neo-additive capacities

introduced in Section 2 belong to this class of capacities.

To see the properties of this class of capacities further, we observe that the CEU with

a JP-capacity is equivalent to a weighted average of the minimum and the maximum

expected utility over the set of probabilities core(θw). Let B(W,BW ) be the space of

all bounded real-valued functions on W which is BW -measurable. Then, we have (∀f ∈
11Ghirardato and Marinacci (2002) developed a notion of comparative ambiguity aversion and defined

more ambiguity-aversion as follows. Let θ̂1 and θ̂2 be two capacitary kernels. The capacitary kernel θ̂2

exhibits more ambiguity-aversion if

(∀w)(∀E) θ̂1w(E) ≥ θ̂2w(E) .

It is observed that higher α implies less ambiguity-aversion in this sense.
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B(W,BW ))(∀w ∈ W )∫
W

f(w′) θ̂αw(dw′) (10)

= α

∫
W

f(w′) θ′w(dw′) + (1− α)

∫
W

f(w′) θw(dw′)

= α max
p∈core(θw)

∫
W

f(w′) p(dw′) + (1− α) min
p∈core(θw)

∫
W

f(w′) p(dw′) ,

where the core of θ, denoted core(θ), is defined by

core(θ) := {p ∈M (W,BW ) | (∀E ∈ BW ) θ′(E) ≥ p(E) ≥ θ(E)}

and M (W,BW ) is the set of all probability charges on (W,BW ). It is well-known that the

core is non-empty when θ is convex and that any element of the core is not only finitely

additive but also countably additive, and hence, it turns out to be a measure when θ is

continuous. That is, the CEU with a JP capacity can be rewritten as the α−Maxmin

expected utility (α−MEU).12 This preferences lies in the intersection between CEU and

α−MEU.

Equation (10) naturally suggests α’s interpretation we adopt here. When α = 1, the

worker is totally optimistic in the sense that she takes care of only the “best” probability

measure in the core to compute the expectation. In contrast, when α = 0 there, the

worker is totally pessimistic in the sense that she takes care of only the “worst” probability

measure in the core to compute it. When α is strictly between them, she has both aspects

of optimism and pessimism with higher α indicating more optimism.

Two novel features of this class of capacities should be noted. First, θ̂α can be neither

convex nor concave, and thus this preference allows the worker to be neither uncertainty-

averse nor uncertainty-loving. Second, this enables us to separate the degree of ambiguity

from the degree of ambiguity-attitudes. As seen before, on the one hand, α can be

regarded as the degree of optimism i.e., the degree of ambiguity-attitudes. On the other

hand, the dilation of core(θw) implies that the set of probabilities expands. Hence, it can

be interpreted as an increase of the degree of ambiguity keeping the degree of ambiguity-

attitudes fixed. This separation enables us to conduct comparative statics with respect

to the degree of ambiguity.

12α−MEU was first suggested by Hurwicz (1951) and has been adopted by various applied studies. Its
axiomatic foundations are given by Ghirardato, Maccheroni, and Marinacci (2004), Hill (2019), and so on.
Note that Eichberger et al. (2011) prove that the approach by Ghirardato, Maccheroni, and Marinacci
(2004) has only been successfully demonstrated for infinite state spaces. In finite state spaces, α takes
only zero or one. Hill (2019) takes a different approach and provides an axiomatic foundation. Note
that α represents the weight for the minimum expected utility in the standard terminology of α−MEU.
We use a different notation to make it consistent with CEU with a neo-additive capacity, which will be
examined later.
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3.3 Lifetime Income for Unemployed Worker

An income process 0y = (y0, y1, y2, . . .) is an R+-valued stochastic process that is 〈BW t〉-
adapted; that is, it satisfies (∀t ≥ 0) yt is BW t-measurable. Given an income pro-

cess 0y, we denote the continuation of 0y after the realization of a history 1wt by

ty1wt := (yt( 1wt), yt+1( 1wt, ·), yt+1( 1wt, ·, ·), . . .). Obviously, the continuation 1wt is

〈BW t〉-adapted given 1wt.

Given any adapted income process 0y and an initial wage offer w0 ∈ W , we define the

lifetime expected income Iw0( 0y) by13

Iw0( 0y) = lim
t→∞

y0 + β

∫
W

(
y1 + β

∫
w

(
y2 + · · ·

β

∫
W

yt θ̂(dwt) · · ·
)
θ̂(dw2)

)
θ̂w0(dw1) , (11)

where β ∈ (0, 1) is the discount factor and
∫
W
· dθ̂ is the Choquet integral with respect to

a capacitary kernel defined by θ̂, that is, (10). Note that each element of the sequence

defining I is well-defined by the continuity of θ̂ and by the Fubini property (Nishimura

and Ozaki, 2017, p.45, Theorem 2.5.1), and that the limit exists (allowing +∞) because

the sequence is nondecreasing by the non-negativity of yt values and by the monotonicity

of the Choquet integral (Nishimura and Ozaki, 2017, p.40, Proposition 2.4.2).

The objective function that resembles (11) and possess a dynamically consistent in-

tertemporal structure has been axiomatized for a finite horizon by Nishimura and Ozaki

(2003, and Chapter 3 of 2017) and for an infinite horizon by Wang (2003). These treat an

objective function defined via general capacities while the one with the specific capacity

used in this paper is not yet done as far as we know. For further discussions, see Appendix

D.

The assumed continuity of θ̂ and the monotone convergence theorem (Nishimura and

Ozaki, 2017, p.44, Theorem 2.4.6) imply that

(∀ 0y)(∀w0) Iw0( 0y) = y0 + β

∫
W

Iw1(1y|w1
) θ̂w0(dw1) ,

which is called Koopmans’ equation.

3.4 Stopping Rule and Optimization Problem

In each period, the prospective worker is given an offer w. Upon observing the value of

w, she has two alternatives: to accept it or to reject it. If she accepts the offer, she will

obtain w for each period from that period on; if she rejects the offer, she will get the

unemployment compensation c > 0 for that period and will be given a random offer again

13In (11), we suppressed the arguments of the integrand: it should be kept in mind that for every t,
yt = yt( 1wt).
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in the next period.

A {0, 1, 2, . . .} ∪ {+∞}-valued random variable d on (W∞,BW∞ is called a stop-

ping time if it satisfies (∀t = 0, 1, 2, . . .) {d = t} ∈ BW t , where {d = t} abbreviates

{ 1w | d( 1w) = t}. We allow d to be +∞ for some history. We denote the set of all stop-

ping rules by ∆. Given any stopping rule d ∈ ∆, we define a process 0y
d = (yd0 , y

d
1 , y

d
2 , . . .)

by

(∀t ≥ 0) ydt :=

 c if d > t

wT if d = T ∈ {0, 1, . . . , t} .

It turns out that 0y
d is in fact 〈BW t〉-adapted (see, for instance, Nishimura and Ozaki,

2017, Lemma A.4.1, p.278), and hence, it is certainly an income process. Given an initial

wage offer w0 ∈ W , we denote the lifetime expected income under a stopping rule d ∈ ∆ by

the symbol I(d) for notational simplicity: Iw0(d) := Iw0( 0y
d). Similarly, given any t ≥ 1

and any history 1wt ∈ W t, we denote the income under d ∈ ∆ after the realization of

1wt by Iwt(d |1wt ): that is, Iwt(d |1wt ) := Iwt( ty
d |1wt ), where ty

d |1wt is the continuation

of 0y
d after the realization of 1wt as is defined in the previous subsection.

It can be shown that

Iw0(d) =
w0

1− β
χ{d=0} +

(
c+ β

∫
Iw1(d |w1 ) dθ̂w0

)
χ{d>0} (12)

(for instance, see Nishimura and Ozaki, 2017, Lemma A.4.2, p.279). Here, χ denotes the

indicator function on W∞.14 Equation (12) is a version of Koopmans’ equation with a

stopping rule d.

A stopping rule d ∈ ∆ is optimal from w0 if d ∈ arg max {Iw0(d)| d ∈ ∆}. A stopping

rule d is admissible if it dictates searching more as long as the observed offer is strictly less

than c. Any stopping rule that is not admissible is suboptimal because is is dominated by

the stopping rule which never stops, and hence, it can be safely ignored. When an optimal

stopping rule exists, we define the value function V ∗ : W → R̄+ by (∀w ∈ W ) V ∗(w) :=

Iw(d∗w), where we denote an optimal stopping rule from w by d∗w.

14For example,

χ{d=t} =

{
1 if ω ∈ {d = t}, i .e., d(ω) = t

0 if ω /∈ {d = t}, i .e., d(ω) 6= t .

Because d is a stopping rule, χ{d=t} and χ{d>t} are BW t-measurable.
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4 Existence and Characterization of Optimal Stop-

ping Rule

4.1 Assumptions and Admissibility

Given random variables w,w0, . . . , wt, let c ∨ w and ∨ti=0wi denote the random variables

defined by max{c, w} and max{w1, . . . , wt}.

Assumption 3 Throughout the rest of this paper, we assume that the primitives of the

model satisfy the following two conditions: (∀w0)

E1. (∀t > 0) W̄ t(w0) :=

∫
· · ·
∫ (

c ∨ ∨ti=0wi
)
θ′(dwt) · · · θ′w0

(dw1) < +∞

E2. limt→∞
(
W̄ t(w0)

)1/t
< β−1 ,

where θ′ is the conjugate of θ defined in Subsection 3.2.

The integrand in E1, c∨∨ti=0wi, is the overly optimistic income the worker expects in

time t. It is overly optimistic because it is the highest offer up to time t (note that our

model is on search without recall). The integral in E1 is its overly optimistic “expectation”

evaluated at time 0. This is overly optimistic because it is evaluated by the conjugate of

θ, rather than θ̂ which is a convex combination of θ itself and its conjugate (recall that

θ is assumed to be convex).15 The assumption E1 requires that this should be finite for

any t.

This optimistic “expected” income, W̄ t, grows as t increases because it takes the

maximum offer up to time t. The left-hand side of E2 defines the time-average of the

rate of growth in W̄ t. Hence, E2 as a whole assumes that this time-average is lower than

the worker’s impatience. When E2 holds, the effect caused by the high income in the

far future can be safely ignored because the worker’s impatience dominates the income

growth along any optimistic path. This is an analogue to the condition for the dynamic

programming technique introduced in Ozaki and Streufert (1996). If θ were simply a

probability measure, the left-hand side of E2 is unity as long as the expectation of w is

finite (Chung, 1974, p.49), and hence, E2 would be automatically satisfied.

Define a (constant) function V − : W → R+ by (∀w) V −(w) := c/(1−β) and a function

15When we prove that the solution to Bellman’s equation (specified later) is the value function, we
apply the method of “squeezing,” which was first developed by Ozaki and Streufert (1996) for maximizing
a stochastic objective function which is not defined via a standard expectation. To “squeeze,” we need to
bound the increment of the Choquet integral with respect to θ̂ by the one with respect to θ’s conjugate.
This is why we need to define the “expected” income via the conjugate of θ in E1. For more details, see
Appendix A.
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V + : W → R̄+ by

(∀w0) V +(w0) := lim
T→∞

(c ∨ w0) + β

∫ ( (
c ∨ ∨1

i=0wi
)

+ · · ·

β

∫ (
c ∨ ∨Ti=0wi

)
θ̂(dwT ) · · ·

)
θ̂w0(dw1) , (13)

which is a well-defined BW -measurable function (let yT := c ∨ ∨Ti=0wi in (11)). Clearly,

V − ≤ V +, and it can be shown that (∀w0) V +(w0) < +∞ by Nishimura and Ozaki (2017,

Lemma A.4.3, p.279) and by the fact that a convex combination of a convex capacity and

its conjugate is dominated by the latter.

A BW -measurable function V : W → R+ is admissible if it satisfies V − ≤ V ≤ V +.

Note that for any admissible stopping rule d, I·(d) is admissible. Let V be the space of

all admissible functions from W into R+, and let B be the operator from V into itself

defined by

(∀V ∈ V )(∀w ∈ W ) BV (w) := max

{
w

1− β
, c+ β

∫
W

V (w′)θ̂w(dw′)

}
. (14)

By Nishimura and Ozaki (2017, Lemma A.4.4, p.280), BV is admissible for any admissible

function V , and hence, the operator B is well-defined. Finally, an admissible function

V ∈ V solves Bellman’s equation if BV = B.

4.2 Main Results on the Reservation Wage

We are now ready to state the main results of this section, which is summarized in the

following theorem. The proof is contained in Appendix A.

Theorem 1 (Bellman’s Principle of Optimality) The value function V ∗ exists and

is the unique admissible solution to Bellman’s equation. Furthermore, V ∗ is attained by

the stopping rule d∗ such that for all t ≥ 0, d∗ = t as soon as

wt
1− β

≥ c+ β

∫
W

V ∗(wt+1)θ̂wt(dwt+1)

holds; and d∗ > t if otherwise.

Let R∗ : W → R+ be a BW -measurable function defined by

(∀w) R∗(w) := (1− β)

(
c+ β

∫
W

V ∗(w′)θ̂w(dw′)

)
.

We call R∗(w) the reservation wage at state w, which is a threshold in the sense that as

soon as the current wage offer equals or exceeds R∗(w), the unemployed worker stops the

search and takes the wage offer; if otherwise, she continues the search.
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4.3 The i.i.d. Case

For a while, we assume that the capacitary karnel θ̂ is independent of the current wage

offer, w. That is, w is independently and indistinguishably distributed as proposed by

Epstein and Schneider (2003b).16 In this case, the characterization of the reservation

wage is given by a simple formula as seen in the following two corollaries.

For the proof of the next corollary, see Nishimura and Ozaki (2017, A.4.4, p.285).17

Corollary 1 Suppose that the capacitary karnel θ̂ is independent of the current wage

offer, w, then the reservation wage R∗(w) will be constant and is given by the solution R∗

to the next equation:

R∗ = c+
β

1− β

∫ ∞
R∗

θ̂ ({w |w ≥ x}) dx .

The next corollary is also immediate:

Corollary 2 Under the same assumption as Corollary 1, the reservation wage R∗ will be

constant and is given by the solution R∗ to the next equation:

R∗ = c+
β

1− β

∫ ∞
R∗

θ ({w |w ≥ x}) dx

+
β

1− β

∫ ∞
R∗

[
α

(
1− θ ({w |w < x})− θ ({w |w ≥ x})

)]
dx . (15)

5 Effect of Higher Ambiguity

This section conducts a sensitivity analysis exclusively with respect to the reservation

wage upon the change of the degree of ambiguity. For other comparative statics results

on, say α, see Appendix B. We denote the reservation wage defined in the previous section

by R∗(w|α, θ) when the current wage offer (i.e., the current state) is w and the worker

employs the JP capacity θ̂α := αθ′ + (1− α)θ.

5.1 Defining “Being More Ambiguous”

As a first step, we define ”being more ambiguous” in a precise manner. As seen in Section

3, the dilation of core(θw) represents higher ambiguity because it means that the set of

probabilities enlarges. That is, ”being more ambiguous” is defined as follows:

Definition 3 Let θ1 and θ2 be two convex capacitary kernels. θ2 exhibits more ambiguity

than θ1 if

(∀w) core(θ2
w) ⊇ core(θ1

w) ,

16They originally proposed this concept in the framework of the Maxmin expected utility, but it can
be straightforwardly extended to our case.

17Replace θ there by θ̂ here.
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which is equivalent to

(∀w)(∀E) θ1
w(E) ≥ θ2

w(E) . (16)

In particular, θ2 exhibits strictly more ambiguity than θ1 if (16) holds with a strict in-

equality for any E 6= W such that θ1
w(E) > 0.

The above equivalence comes from the convexity of capacitary kernels.

5.2 General Results

Given the above definition of higher ambiguity, we obtain several remarkable properties

regarding the effect of higher ambiguity as follows:

Proposition 1 Fix α and suppose that θ2 is strictly more ambiguous than θ1. Then, the

following properties hold.

(i). Fix w. There exists ā ∈ (0, 1) such that for any α ∈ [0, ā), R∗(w|α, θ1) >

R∗(w|α, θ2).

(ii). Fix w. There exists a ∈ (0, 1) such that for any α ∈ (a, 1], R∗(w|α, θ1) <

R∗(w|α, θ2).

(iii). Suppose that θ1 is additive. Fix w. There exists a unique ᾱ ∈ (0, 1) such that

• R∗(w|α, θ1) ≤ R∗(w|α, θ2) for all α > ᾱ

• R∗(w|α, θ1) > R∗(w|α, θ2) for all α < ᾱ.

The proposition shows how the effect of higher ambiguity depends on the degree of opti-

mism. When α = 0 (i.e., the worker is purely pessimistic), higher ambiguity reduces the

reservation wage. This is the result obtained by Nishimura and Ozaki (2004, Theorem 2).

From this result, the exsiting studies have understood that higher uncertainty in the sense

of ambiguity always discourages the worker to continue the search, which is in contrast

to the effect of higher risk.

(i) and (ii) demonstrate that this result hings on the assumption that the worker is

uncertainty-averse. On the one hand, (i) shows that the result of Nishimura and Ozaki

(2004) remains when α is close to zero. On the other hand, (ii) shows that the effect is

opposite when α is close to one; that is, higher ambiguity rather increases the reservation

wage when the worker is relatively optimistic. This is because higher ambiguity on the

future wage offers increases the expected value of continuing search when the worker is

optimistic.

From (i) and (ii), it would be expected that there is a threshold value ᾱ, and higher

ambiguity reduces the reservation wage if and only if the degree of optimism is lower

than ᾱ. Although this seems to be straightforward, it is hard to prove this property.

(iii) confirms this conjecture by restricting our attention to the compariosn with and
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without ambiguity. When the capacity is additive, its core is singleton, thus such a

capacity represents the absence of ambiguity. (iii) argues that compared with no ambiguity

cases, the existence of ambiguity reduces the reservation wage if and only if the degree of

optimism is lower than ᾱ.

These results together confirm the findings in the motivating example (Section 2).

6 Time Discounting and Effect of Higher Ambiguity

We will next examine how the effect of ambiguity depends on the agent’s discount factor

when the agent is neither purely optimistic nor pessimistic (i.e., α ∈ (0, 1)). To this end,

we focus on the i.i.d. case examined in Section 4.3. That is, θ̂w is independent of w.

6.1 Neo-Additive Capacities and Their δ−Approximation

To obtain a clear-cutting property, from now own, we exclusively focus on the class of

neo-additive capacities, which was examined in Section 2. This is a well-known special

class of JP-capacities with a nice axiomatic foundation (Chateauneuf, Eichberger, and

Grant 2007) and has been widely used in applied researches.

Formally, the neo-additive capacities are defined as follows:

Definition 4 A capacity θ̂ is called a neo-additive capacity if for any E /∈ S ∪ ∅,

θ̂(E) := (1− ε)π(E) + εα ,

where π is a probability measure and ε ∈ (0, 1).

Let the cumulative distribution function of π be F . We assume that F is continuous and

differentiable and π has a full-support. This is the JP-capacity, where the convex capacity

θ has a particular formula:

θ(E) := (1− ε)π(E) .

When α = 0, this class of capacities is reduced to the ε-contamination, a well-known

capacity in the context of MEU.18 Hence, neo-additive capacities can be regarded as

the generalization of ε-contamination to the cases where the agent is not necessarily

uncertainty-averse.

This class of capacities has two advantages in analyzing the relationship between time

discounting and the effect of higher ambiguity. First, an increase of ε leads to the dilation

of core(θ), and hence, its increase can be interpreted as an increase of the degree of

ambiguity in the sense of Definition 3. That is, the degree of ambiguity is modelled as

a single parameter ε, which makes comparative statics analysis much easier. Second,

18Axiomatic foundations of ε-contamination are provided by Nishimura and Ozaki (2006) and the
subsequent works.
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and most importantly, it is known that this is neither convex nor concave if and only if

α ∈ (0, 1). Hence, this capacity allows us to analyze the case where the worker is neither

uncertainty-averse nor uncertainty-loving.19

Neo-additive capacities are, however, not continuous, which violates our initial as-

sumption. Thus, we need to consider the approximation by a continuous capacity.20

Definition 5 Capacity θ̂δ is called a δ−approximation of a neo-additive capacity if for

any E ∈ BW ,

θδ(E) =

(1− ε)π(E) (π(E) ≤ 1− δ)

(1− ε)π(E) + ε[(π(E)− 1)/δ + 1] (π(E) > 1− δ)
.

If δ goes to zero, this capacity approximates a neo-additive capacity.

Although this capacity looks complicated, we have another simple representation.

From the definition of the core, we have

core(θδ) = {(1− ε)π + εµ| µ ∈M(π, δ)} ,

where

M(π, δ) := {µ ∈M| (∀E) δµ(E) ≤ π(E)} .

Note thatM is the set of all probability charges. Consequently, by using equation (10), we

obtain the following representation. Let B(W,BW ) be the space of all bounded real-valued

functions on W which is BW -measurable. Then, we have (∀f ∈ B(W,BW ))(∀w ∈ W )∫
W

f(w) θ̂δ(dw)

=α max
p∈core(θδ)

∫
W

f(w) p(dw) + (1− α) min
p∈core(θδ)

∫
W

f(w) p(dw)

=(1− ε)
∫
W

f(w) π(dw)

+ ε

[
α max
p∈M(π,δ)

∫
W

f(w) p(dw) + (1− α) min
p∈M(π,δ)

∫
W

f(w) p(dw)

]
.

When δ = 0 (i.e., in the case of neo-additive capacities), M(π, δ) becomes equivalent

to the set of all probability charges, and thus, this can be further rewritten as

(1− ε)
∫
W

f(w) π(dw) + ε

[
αmax
w∈W

f(w) + (1− α) min
w∈W

f(w)

]
. (17)

19JP-capacities do not always lead the worker to be neither uncertainty-averse nor uncertainty-loving
for some α. To see this, consider a capacity such that θ̂w(E) = π(E)w + (α − 0.5)γ for E 6= S, ∅, where
γ > 0. This capacity is a JP capacity, but it is convex if α < 0.5 and concave if α > 0.5.

20Nishimura and Ozaki (2004) originally consider the δ−approximation of ε−contamination.
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6.2 Bounded Case

We start the analysis with the case where W is bounded: W := [0, B] where B > c. Let

the reservation wage for a δ−approximation of a neo-additive capacity be R∗(δ). Our

interest is R∗neo := limδ↘0R
∗(δ).

Proposition 2 Let the expected value of w when the true distribution is π be Eπ(w) and

let

ᾱ := 1−
B − Eπ(w)−

∫ c
0
F (w)dw

B − c
∈ (0, 1).

(i). For any α ∈ [ᾱ, 1], R∗neo is increasing in ε.

(ii). For any α ∈ (0, ᾱ), there exists β̄ ∈ (0, 1) such that R∗neo is increasing in ε if and

only if β ∈ (β̄, 1). Furthermore, β̄ is decreasing in c.

(i) is for the case where the worker is sufficiently optimistic, though α can be strictly

lower than one. When α is strictly lower than one, the worker is no longer uncertainty-

loving. That is, with a small fraction, 1 − α, she takes the worst case into account. (i)

argues that higher ambiguity always leads to higher reservation wage independently of the

discount factor β even in that case. Hence, for a sufficiently optimistic worker, higher

ambiguity always encourages the worker to continue search.

On the contrary, (ii) states the case where the worker is sufficiently pessimistic, though

α can be strictly higher than zero. When α is strictly positive, the worker is no longer

uncertainty-averse in the sense that she takes the best case into account with a small

fraction, while she is still sufficiently pessimistic. In this case, the discount factor, β,

matters. The result indicates that for any positive α, there exists a high discount factor

under which higher ambiguity increases the reservation wage. That is, as long as the

worker is not purely pessimistic, the worker behaves as if she were ambiguity-loving,

when the discount factor is sufficiently high. The striking part of the result is that this is

true even if α is close to zero.

The mechanism can be understood as follows. Consider whether the worker has an

incentive to accept a wage offer R∗. Let the expected payoff from the next period when

continuing search under the probability measure π be vπ. Then, the payoff difference

between accepting the offer and continuing search can be rewritten as

ε[R∗ − β((1− α)R∗ + αB)] + (1− ε) [R∗ − βvπ] .

The first term is the payoff difference when π is not the true distribution and the second

term is that when π is the true distribution. Suppose that β is close to one so that the first

term is negative. Hence, at the equilibrium, the second term is positive because the payoff

difference should be zero. What will happen if ε increases in this environment? Then, the

payoff difference decreases and becomes negative. That is, the worker is encouraged to

continue search. In this discussion, the key is the fact that R∗ − β((1− α)R∗ + αB) < 0
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when β is close to one. Because of the infinite-horizon structure, the worst-case payoff is

still βR∗ when continuing search. Hence, the convex combination of the best-case and the

worst-case exceeds R∗ when β is large even if α is close to zero. This mechanism creates

the above results.

This result implies that the discount factor affects whether the result for an uncertainty-

averse agent is applicable to agents who are not perfectly pessimistic. When the discount

factor is high, even slight contamination of optimistic aspects could have a drastic change.

This might provide a rationale for why experimental results are mixed. In a job search

experiment, Asano, Okudaira, and Sasaki (2015) find that higher ambiguity decreases the

reservation wage. On the other hand, Della Seta, Gryglewicz, and Kort (2014) experi-

mentally analyze the effect of ambiguity on a similar optimal stopping problem. They

find that higher ambiguity rather increases the reservation wage, which contradicts to the

theoretical prediction under uncertainty-aversion. In short, the two studies obtain differ-

ent results about whether the theoretical prediction under uncertainty-aversion holds in

an experimental setting. This mixed conclusion might come from a difference in the sub-

jects’ discount factor. Our result indicates that we should carefully control the subjects’

discount factor in experiments.

6.3 Unbounded Case

We turn to the analysis of the unbounded case where W := [0,∞).

Remember that when δ = 0, M(π, δ) is the set of all probability charges, and thus it

includes the probability charge giving probability one to the best outcome. As a result,

max
p∈M(π,0)

∫
W

f(w) = max
w∈W

f(w) .

This simplifies the analysis in the bounded case, but creates a technical challenge when

W is unbounded. When the return is unbounded, the best outcome is also unbounded.

Hence, maxp∈M(π,0)

∫
W
f(w) takes infinity . Consequently, (17) is not well-defined and E1

is never satisfied when W is unbounded and δ = 0. Indeed, in Section 2, we assumed that

W is bounded to guarantee that (3) is well-defined.

This problem can be resolved by assuming δ > 0. The above problem comes from the

property thatM(π, 0) includes the probability charge giving a positive probability to the

best outcome. When δ is strictly positive, any distribution included in M(π, δ) has no

mass point, because µ(w) = 0 for any w ∈ W and µ ∈ M(π, δ). As a result, as long

as π is well-behaved, maxp∈M(π,0)

∫
W
f(w) does not diverge to infinity, and thus (17) is

well-defined and E1 is satisfied. In short, our δ−approximation of neo-additive capacities

enables us to consider unbounded returns by using neo-additive capacities.

Since the utility goes to infinity as δ goes to zero, we can no longer focus on the

limit case i.e., limδ→0R
∗(δ). Instead, we need to fix δ and analyze the effect of ambiguity

on R∗(δ). This complicates the analysis, but it is proven that the main property in
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Proposition 2 still holds.

Proposition 3 Fix α ∈ (0, 1). Suppose that c > 0 and δ is sufficiently small, but strictly

positive. Then, there exists β̄ ∈ (0, 1) such that R∗(δ) is increasing in ε if β ∈ (β̄, 1).

Hence, as long as the worker is not purely pessimistic, the worker behaves as if she were

ambiguity-loving, when the discount factor is sufficiently high. This property is preserved

even in the unbounded case.

7 Concluding Remarks

This paper considered a one-sided search problem in the presence of ambiguity (i.e.,

Knightian uncertainty). Our novelty is to depart from the assumption of uncertainty-

aversion by adopting the Choquet expected utility with a JP capacity. This setting

allows us to separate the degree of ambiguity from ambiguity-attitudes. By exploiting

this feature, we examined whether higher ambiguity induces an agent to search shorter

or longer. We first showed that higher ambiguity induces the agent to search shorter if

and only if the agent’s degree of optimism is sufficiently low. We next examined how the

effect of ambiguity depends on the agent’s discount factor when the agent is neither purely

optimistic nor pessimistic. Focusing on a subclass of JP capacities, called neo-additive

capacities, we found that even slight contamination of optimism leads to ambiguity-loving

behaviors when the agent is sufficiently patient.
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APPENDICES

A Lemmas and Proofs

A.1 Derivations in Section 2

(i). We first verify that R∗ ∈ (c, b). By simple rearrangement of the terms,

D =
(

1 + αβ̂ε
)2

+
2β̂

b− a
(1− ε)(b− c) >

(
1 + αβ̂ε

)2

=: D′

because 2β̂(1− ε)(b− c)/(b− a) > 0, which in turn follows from ε < 1, b > a and b > c,

the last of which can be seen as an appropriate assumption in the current model because

if otherwise, the unemployed worker should keep declining the wage offer.

Therefore, it immediately follows that

R∗ <
1

1− ε

[
b(1− ε) + (b− a)αε+ (b− a)

1−
√
D′

β̂

]
= b , (18)

where the inequality holds because D > D′, the observation we have just made.

Because the worker cannot expect any wage offer exceeding b, which is the least upper

bound of the possible wage offers, this inequality is exactly what we expect for this model.

Symmetrically, define D′′ by

D′′ := D + (1− ε)β̂2 b− c
b− a

[
(1− ε) b− c

b− a
+ 2αε

]
.

Obviously, it holds that D′′ > D under the current configuration of the parameter values,

and hence, we have

R∗ >
1

1− ε

[
b(1− ε) + (b− a)αε+ (b− a)

1−
√
D′′

β̂

]
= c . (19)

Because the worker can always decline the wage offer and get at least the unemployment

compensation, c, the relation seen in Inequality (19) can be reasonably expected to hold

for the current model.
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(ii). We next derive Equality (6).

lim
β̂ ↑+∞

1−
√
D

β̂
= lim

β̂ ↑+∞
− ∂

∂β̂

√
D

= − lim
β̂ ↑+∞

(1− ε)(b− c)/(b− a) + αε+ α2β̂ε2√
1 + 2β̂(1− ε)(b− c)/(b− a) + 2αβ̂ε+ α2β̂2ε2

= − lim
β̂ ↑+∞

α2β̂ε2√
1 + 2β̂(1− ε)(b− c)/(b− a) + 2αβ̂ε+ α2β̂2ε2

= − lim
β̂ ↑+∞

α2ε2√
1

β̂2
+

2(1− ε)(b− c)
β̂(b− a)

+
2αε

β̂
+ α2ε2

= −αε .

(iii). Next, we prove that R∗ is increasing in β. For notational ease, define the three

formulas as follows:

A :=

√
1

β̂2
+

2(1− ε)(b− c)
β̂(b− a)

+
2αε

β̂
+ α2ε2 ;

B :=
1

β̂
+

(1− ε)(b− c)
b− a

+ αε ; and

C :=

√
1

β̂
+

2(1− ε)(b− c)
b− a

+ 2αε+ α2β̂ε2 .

Note that A, B and C are all positive. Also, a direct computation shows that B2 > A2,

and hence, that B > A by their positivity. Furthermore, we will have21

∂

∂β̂

(
1−
√
D

β̂

)
=
−A+B

C
> 0 ,

which shows the reservation wage R∗ is increasing in β̂, and hence, in β regardless of the

values of the other parameters (as far as they satisfy the aforementioned conditions).

(iv). Lastly, we prove that R∗ can become as close as possible to c by letting β to be

close to zero. Let β ↓ 0, which corresponds to β̂ ↓ 0. If we look at a relevant part of (5),

(1 −
√
D)/β̂, its “limit” as β̂ ↓ 0 will be 0/0, which is an indeterminate expression, and

21Please trust us unless you are quite skeptical.
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thus, we can invoke l’Hôpital’s rule again to find out its limit. We have

lim
β̂ ↓ 0

1−
√
D

β̂
= lim

β̂ ↓ 0
− ∂

∂β̂

√
D

= − lim
β̂ ↓ 0

(1− ε)(b− c)/(b− a) + αε+ α2β̂ε2√
1 + 2β̂(1− ε)(b− c)/(b− a) + 2αβ̂ε+ α2β̂2ε2

= −(1− ε)(b− c)
b− a

− αε ,

the last term of which can be plugged back to (5) to obtain

R∗ =
1

1− ε
[ b(1− ε) + (b− a)αε− (1− ε)(b− c)− (b− a)αε ] = c ,

which confirms the third observation: R∗ can be made as close as possible to the unem-

ployment compensation by making β as small and close as possible to 0.

A.2 Proof of Theorem 1

Lemma 1 Let θ be a convex capacity. Then, for any a, b ∈ B(W,BW ), it holds that∣∣∣∣∫ a dθ′ −
∫
b dθ′

∣∣∣∣ ≤ ∫ |a− b| dθ′ .
Proof Because θ′ is concave and because the Choquet integral with respect to a concave

capacity is sub-additive (see Lemma 9), it follows that∫
(a+ b)dθ′ −

∫
a dθ′ ≤

∫
b dθ′ .

Here, if we set a′ := a+ b and b′ := a, then a′ − b′ = b and it holds that∫
a′ dθ′ −

∫
b′ dθ′ ≤

∫
(a′ − b′)dθ′ ≤

∫
|a′ − b′| dθ′ ,

where we applied the monotonicity of the Choquet integral (see Lemma 8) for the second

inequality.

Symmetrically, we have∫
b′ dθ′ −

∫
a′ dθ′ ≤

∫
|a′ − b′| dθ′ .

Because we could have chosen a′ and b′ arbitrarily, the proof is complete. �
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Lemma 2 Let θ be a convex capacity. Then, for any a, b ∈ B(W,BW ), it holds that∣∣∣∣∫ a dθ −
∫
b dθ

∣∣∣∣ ≤ ∫ |a− b| dθ′ .
Proof See Nishimura and Ozaki (2017, Theorem 2.4.3, p.43). �

Lemma 3 Let θ be a convex capacity and let θ̂ be a capacity defined by (9). Then, for

any a, b ∈ B(W,BW ), it holds that∣∣∣∣∫ a dθ̂ −
∫
b dθ̂

∣∣∣∣ ≤ ∫ |a− b| dθ′ .
Proof By the definition of θ̂, note that, for any α ∈ [0, 1],∣∣∣∣∫ a dθ̂ −

∫
b dθ̂

∣∣∣∣
=

∣∣∣∣(α ∫ a dθ′ + (1− α)

∫
a dθ

)
−
(
α

∫
b dθ′ + (1− α)

∫
b dθ

)∣∣∣∣
=

∣∣∣∣α(∫ a dθ′ −
∫
b dθ′

)
+ (1− α)

(∫
a dθ −

∫
b dθ

)∣∣∣∣
≤ α

∣∣∣∣∫ a dθ′ −
∫
b dθ′

∣∣∣∣+ (1− α)

∣∣∣∣∫ a dθ −
∫
b dθ

∣∣∣∣
≤ α

∫
|a− b| dθ′ + (1− α)

∫
|a− b| dθ′

=

∫
|a− b| dθ′ ,

where we invoked Lemmas 1 and 2 for deriving the last inequality. �

Proof of Theorem 1 The proof can be conducted by imitating verbatim the proof

of Theorem 9.4.1 in Nishimura and Ozaki (2017, p.156) except that Lemma 2 should be

replaced by Lemma 3. �
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A.3 Proof of Corollary 2

By substituting (9) into Corollary 1, we have

R∗ = c+
β

1− β

∫ ∞
R∗

θ̂ ({w |w ≥ x}) dx

= c+
β

1− β

∫ ∞
R∗

(
αθ′ ({w |w ≥ x}) + (1− α)θ ({w |w ≥ x})

)
dx

= c+
β

1− β

∫ ∞
R∗

(
α (1− θ ({w |w < x}))

+ (1− α)θ ({w |w ≥ x})
)
dx ,

where the third line holds by definition of the conjugate of θ. Rearranging the terms

completes the proof. �

A.4 Proof of Proposition 1

We prove only (ii) and (iii).

Proof of (i). For the case of α = 0, the statemet is easily proven as in Nishimura and Ozaki

(2004, Theorem 2). Since V ∗ is continuous with respect to α, R∗(w|α, θ1) − R∗(w|α, θ2)

is also continuous. By utilizing this fact, we can extend the result for α = 0 to the cases

for positive α that is sufficiently close to zero.

Proof of (ii). For each i, let Bi and V i∗ be the operator and the value function corre-

sponding to θi. Then, for any V and w,

B1V (w) = max

{
w

1− β
, c+ β

∫
W

V (w′)θ1′
w(dw′)

}
≤max

{
w

1− β
, c+ β

∫
W

V (w′)θ2′
w(dw′)

}
=B2V (w).

The second inequality comes from the fact that θ′w is concave. Hence, by this, the fact

that BiV ′ ≥ BiV whenever V ′ ≥ V , and that V i∗ = limn→∞(Bi)nV −, it follows that
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V 1∗ ≤ V 2∗. Finally, we conclude that for any w,

R∗(w|1, θ1)

1− β
=c+ β

∫
W

V 1∗(w′)θ1′
w(dw′)

≤c+ β

∫
W

V 2∗(w′)θ1′
w(dw′)

<c+ β

∫
W

V 2∗(w′)θ2′
w(dw′)

=
R∗(w|1, θ2)

1− β
.

As in (i), this can be extended to the cases for α that is sufficiently close to one.

Proof of (iii). Fix w.

First, we prove that R∗(w|α, θ1)−R∗(w|α, θ2) is weakly decreasing in α. Because θ1 is

additive, R∗(w|α, θ1) is independent of α. Furthermore, from Proposition 4, R∗(w|α, θ1) is

weakly increasing in α. By combining these two properties, it is shown that R∗(w|α, θ1)−
R∗(w|α, θ2) is weakly decreasing in α.

Second, from (i) and (ii), R∗(w|1, θ1)−R∗(w|1, θ2) < 0, whereasR∗(w|0, θ1)−R∗(w|0, θ2) >

0.

Lastly, V ∗ is continuous with respect to α.

By combining these results, we obtain the proposition. �

A.5 Proof of Proposition 2

Lemma 4 Let θ̂ be a neo-additive capacity. Then, the reservation wage R∗ will be con-

stant and is given by the solution R∗ to the next equation:

g(R) :=(1− β)c−R + βEπ(w) + β

∫ R

0

F (w)dw

− ε

1− ε
[(1− (1− α)β)R− αβB − (1− β)c] = 0 . (20)

The solution R∗ is unique and R∗ ∈ (0, B).
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Proof By rewriting (15) based on the definition of a neo-additive capacity, we have

R = c+
β

1− β

∫ B

R

(1− ε)(1− F (x))dx

+
β

1− β

∫ ∞
R

[
α

(
1− (1− ε)F (x)− (1− ε)(1− F (x))

)]
dx

⇔R = c+
β

1− β
(1− ε)

∫ B

R

(1− F (x))dx+
β

1− β
εα

∫ B

R

dx

⇔(1− β)R = (1− β)c+ β(1− ε)
∫ B

R

(1− F (x))dx+ βεα(B −R)

⇔− ε

1− ε
[(1− (1− α)β)R− αβB − (1− β)c]

+ β

∫ B

R

(1− F (x))dx+ (1− β)c− (1− β)R = 0 . (21)

Here, ∫ B

R

(1− F (x))dx =B −R−
∫ B

R

F (x)dx

=B −R−
[∫ B

0

F (x)dx−
∫ R

0

F (x)dx

]
=B −R−

[
BF (B)− Eπ(w)−

∫ R

0

F (x)dx

]
=−R + Eπ(w) +

∫ R

0

F (x)dx . (22)

The third equality comes from the integration by parts:∫ B

0

F (w)dw = BF (B)−
∫ B

0

wdF (w) = B − Eπ(w) . (23)

Substituting (22) into (21), we have

− ε

1− ε
[(1− (1− α)β)R− αβB − (1− β)c]

+ β

∫ R

0

F (x)dx+ βEπ(w) + (1− β)c−R = 0 . (24)

The left-hand side is g(R). Hence, g(R∗) = 0 is equivalent to (15).

For the second part,

g′(R) = −(1− (1− α)β) + βF (R)− 1 < 0 ;

g(0) =
ε

1− ε
[αβB + (1− β)c] + βEπ(w) + (1− β)c > 0 ;

30



g(B) = −
(

ε

1− ε
+ 1

)
(1− β)(B − c) < 0 .

Note that for the calculation of g(B), we use (23). Hence, we have the second part. �

Given this lemma, we prove the proposition.

Proof of Proposition 2 Since (15) is continuous with respect to δ, R∗neo is equal to the

value of R∗ when δ = 0. Hence, it suffices to analyze the case where δ = 0. When δ = 0,

∂g

∂ε
= −

(
ε

1− ε

)′
[(1− (1− α)β)R− αβB − (1− β)c] .

Hence, the comparative statics depends on the sign of ∂g̃
∂ε

at R = R∗. That is,

sign

(
∂R∗

∂ε

)
= −sign ((1− (1− α)β)R∗ − αβB − (1− β)c) .

Therefore, it suffices to check the sign of (1− (1− α)β)R∗ − αβB − (1− β)c.

Here,

(1− (1− α)β)R∗ − αβB − (1− β)c > 0⇔ R∗ >
αβB + (1− β)c

1− (1− α)β
,

which holds if and only if

g

(
αβB + (1− β)c

1− (1− α)β

)
> 0 . (25)

This equivalence comes from the fact that g is decreasing in R. Hence, when R =
αβB+(1−β)c

1−(1−α)β
:

g(R) > 0⇔ (1− β)c−R + βEπ(w) + β

∫ R

0

F (w)dw > 0 .

Using this, (25) is finally rewritten as follows:

(25)⇔ k(β) :=− α

1− (1− α)β
B − 1− β

1− (1− α)β
(1− α)c+ Eπ(w)

+

∫ αβB+(1−β)c
1−(1−α)β

0

F (w)dw > 0 .

Since

sign

(
∂R∗

∂ε

)
= −sign(k(β)),

from now on, we analyze the sign of k(β).
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First, it is easily verified that

k(0) = Eπ(w)− αB − (1− α)c+

∫ c

0

F (w)dw ;

k(1) = Eπ(w) +B − Eπ(w)−B = 0 .

Note that for the calculation of k(1), we use the fact that from the integration by parts:∫ B

0

F (w)dw = BF (B)−
∫ B

0

wdF (w) = B − Eπ(w) .

Furthermore,

k′(β) =
∂

∂β

(
αβB + (1− β)c

1− (1− α)β

)
F

(
αβB + (1− β)c

1− (1− α)β

)
− ∂

∂β

(
α

1− (1− α)β
B +

1− β
1− (1− α)β

(1− α)c

)
=

α(B − c)
(1− (1− α)β)2

F

(
αβB + (1− β)c

1− (1− α)β

)
− (1− α)α(B − c)

(1− (1− α)β)2

=
α(B − c)

(1− (1− α)β)2

[
F

(
αβB + (1− β)c

1− (1− α)β

)
− (1− α)

]
.

Hence,

k′(β) ≷ 0⇔ F

(
αβB + (1− β)c

1− (1− α)β

)
≷ (1− α) . (26)

Since
∂

∂β

(
αβB + (1− β)c

1− (1− α)β

)
=

α(B − c)
(1− (1− α)β)2

> 0

holds, (26) implies that there exists a threshold value β̄ ∈ [0, 1) such that k′(β) > 0 if and

only if β > β̄; that is, k is a U shape.

Proof of (i). When α ≥ 1− (B−Eπ(w)−
∫ c

0
F (w)dw)/(B− c), k(0) ≤ 0. Furthermore, as

we have shown, k(1) = 0 and k is a U shape. Hence, for any β, k(β) ≤ 0, which completes

the proof.

Proof of (ii). When α < 1− (B−Eπ(w)−
∫ c

0
F (w)dw)/(B− c), k(0) > 0, while k(1) = 0.

Furthermore, k is a U shape. Hence, there exists β̄ ∈ (0, 1) such that if and only if

β ∈ (β̄, 1), g(β) > 0, implying the first part.

We next prove the latter part. By applying the implicit function theorem, we have

dβ̄

dc
= −

∂k
∂c
∂k
∂β

.

Since k(0) > 0, k(1) = 0, and k is a U shape, k′(β̄) < 0 i.e., the denominator is negative.
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In addition,
∂k

∂c
=

1− β
1− αβ

(
F

(
(1− α)βB + (1− β)c

1− αβ

)
− α

)
,

which is negative when β = β̄. This is because k′(β̄) < 0. Hence, dβ̄
dc
< 0. �

A.6 Proof of Proposition 3

We first characterize the optimal stopping rule in a specific manner. Suppose that the

worker rejects the current offer and continues the search. In this case, the payoff is:

c+ β(1− ε)
∫
W

u(w) π(dw)

+ βε

[
α max
p∈M(π,δ)

∫
W

u(w) p(dw) + (1− α) min
p∈M(π,δ)

∫
W

u(w) p(dw)

]
, (27)

where

u(w) :=

 R∗

1−β (w < R∗)

w
1−β (w ≥ R∗)

.

To explicitly rewrite the third-term in (27), we first define two probability measures:

Definition 6 (i). The following probability measure is denoted by π̄:

π̄({ω ≥ x}) := min

{
π({w ≥ x})

δ
, 1

}
.

We also define x̄ as x satisfying π({w ≥ x}) = δ.

(ii). The following probability measure is denoted by π:

π({ω ≤ x}) :=

{
π({w ≤ x})

δ
, 1

}
.

We also define x as x satisfying π({w ≤ x}) = δ.

From now on, we assume that δ is sufficiently small so that x < c.

These two probability measures have the following property.

Lemma 5 π̄ first-order stochastically dominates any other probability charges contained

in M(π, δ), whereas π is first-order stochastically dominated by any other probability

charges contained in M(π, δ).

Proof The proof is straightforward, and thus we omit it. �
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Hence, maxp∈M(π,δ)

∫
W
u(w) p(dw) should be evaluated by using π̄, whereas minp∈M(π,δ)

∫
W
u(w) p(dw)

should be evaluated by using π. Therefore,

max
p∈M(π,δ)

∫
W

u(w) p(dw) =
1

1− β
B(R∗) ,

where

B(R∗) :=

∫ R∗

min{x̄,R∗}
R∗dπ̄ +

∫ ∞
R∗

wdπ̄ .

Furthermore, if x < c, R∗ > x, and thus

min
p∈M(π,δ)

∫
W

u(w) p(dw) =
1

1− β
R∗ .

By using these notations, we can obtain the lemma corresponding to Lemma A.6.

Lemma 6 Let θ̂ be a δ−approximation of a neo-additive capacity. Suppose also that δ is

sufficiently small so that x < c. Then, the reservation wage R∗ will be constant and is

given by the solution R∗ to the next equation:

g(R) :=(1− β)c−R + βEπ(w) + β

∫ R

0

F (w)dw

− ε

1− ε
[(1− (1− α)β)R− αβB(R)− (1− β)c] = 0.

The solution R∗ is unique and R∗ ∈ (c,∞).

Proof The proof is similar to that of Lemma . Thus, we omit it. �

We achieved the complete characterization of the optimal stopping rule. Before the

proof of the proposition, we obtain another lemma.

Lemma 7 Let

h(R) := (1− (1− α)β)R− αβB(R)− (1− β)c .

There exists a unique R̄ ∈ W such that h(R) > 0 if and only if R > R̄.

Proof First,
∂h

∂R
= 1− (1− α)β − αβ∂B

∂R
,

which is positive because ∂B
∂R
≤ 1 by its construction. Furthermore, it is easily verified

that h(0) < 0, whereas h(R) > 0 as R→∞. Thus, we obtain the lemma. �

Using these lemmas, we finally prove the proposition.
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Proof of Proposition 3 As in the proof of Proposition 2,

sign

(
∂R∗

∂ε

)
= −sign ((1− (1− α)β)R∗ − αβB(R∗)− (1− β)c) .

Therefore, it suffices to check the sign of (1− (1− α)β)R∗ − αβB(R∗)− (1− β)c. From

Lemma 7,

(1− (1− α)β)R∗ − αβB − (1− β)c > 0⇔ R∗ > R̄,

which holds if and only if g(R̄) > 0. Hence, as in the proof of Proposition 2,

g(R̄) > 0⇔ k(β) :=− α

1− (1− α)β
B(R̄)− 1− β

1− (1− α)β
(1− α)c+ Eπ(w)

+

∫ αβB(R̄)+(1−β)c
1−(1−α)β

0

F (w)dw > 0.

Note that B(R̄) depends on β, because R̄ depends on β. Hence, this is different from

k(β) defined in the proof of Proposition 2.

Since

sign

(
∂R∗

∂ε

)
= −sign(k(β)),

our goal is to show that g(β) < 0 for sufficiently large β.

Here, define

B :=

∫ ∞
x̄

wdπ .

By its construction, B is independent of β and less than B(R̄). In addition, define l by

replacing B(R̄) in k(β) with R:

l(β) := − α

1− (1− α)β
B − 1− β

1− (1− α)β
(1− α)c+ Eπ(w) +

∫ αβB+(1−β)c
1−(1−α)β

0

F (w)dw .

Since k(β) is decreasing in B(R), l(β) > k(β) holds. Thus, it suffices to prove that

l(β) is negative for sufficiently large β. This is easily verified because l(β) is the same as

k(β) in the proof of Proposition 2. �

B The Effect of Higher Optimism

In the main analysis, we have focused on the comparative statics with respect to the

degree of ambiguity. Another interest would be the effect of higher optimism (i.e., higher

α). The following proposition shows that less optimism reduces the reservation wage and

encourages the worker to accept a wage offer. As α decreases, the worker becomes more

pessimistic about future wage offers. As a result, the worker becomes more likely to accept
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the current offer.22

Proposition 4 For all w, R∗(w) is weakly increasing in α.

Proof Consider α1 and α2 such that α1 < α2. For each i, let Bi, V i∗, and R∗i be the

operator, the value function, and the reservation wage corresponding to αi. Then, for any

V and w,

B1V (w) = max

{
w

1− β
, c+ β

[
(1− α1)

∫
W

V (w′)θw(dw′) + α1

∫
W

V (w′)θ′w(dw′)

]}
≤max

{
w

1− β
, c+ β

[
(1− α2)

∫
W

V (w′)θw(dw′) + α2

∫
W

V (w′)θ′w(dw′)

]}
=B2V (w).

Note that the second inequality holds because∫
W

V (w′)θw(dw′) ≤
∫
W

V (w′)θ′w(dw′),

which is implied by the convexity of θw. Hence, it follows that V 1∗ ≤ V 2∗. Finally, we

conclude that for any w,

R∗1(w)

1− β
=c+ β

[
α1

∫
W

V 1∗(w′)θw(dw′) + (1− α1)

∫
W

V 1∗(w′)θ′w(dw′)

]
≤c+ β

[
α1

∫
W

V 2∗(w′)θw(dw′) + (1− α1)

∫
W

V 2∗(w′)θ′w(dw′)

]
≤c+ β

[
α2

∫
W

V 2∗(w′)θw(dw′) + (1− α2)

∫
W

V 2∗(w′)θ′w(dw′)

]
=
R∗2(w)

1− β
.

Hence, we have the proposition. �

C Basic Properties of CEU

In CEU, not a probability measure but a probability capacity is used.

Definition 7 A probability capacity on (W,BW ) is a function θ: BW → [0, 1] which

satisfies the followings: (a) θ(∅) = 0; (b) θ(W ) = 1; (c) for any C,D ∈ BW , if C ⊆ D,

then θ(C) ≤ θ(D).

22In an extension, Miao and Wang (2011) analyze the one-sided search problem by using the smooth
ambiguity model, where they show that higher ambiguity-aversion reduces the reservation wage. Besides,
Huang and Yu (2021) analyze a continuous-time optimal stopping problem, which has a different struc-
ture. By adopting the non-iterated α−MEU (see Appendix D), they show that the more ambiguity-averse,
the more eager to stop. Our result is consistent with these findings.
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(c) is called monotonicity. In a probability measure, a probability satisfies σ−additivity

rather than (c).

By using this capacity, we calculate the expected utility based on not the Riemann

integral but the Choquet integral. In the following, we present several properties of the

Choquet integral. For the details of these properties, see, for example, Nishimura and

Ozaki (2017).

Lemma 8 Let θ be a probability capacity.

(i). (Monotonicity). For u, v ∈ B(W,BW ),

u ≤ v ⇒
∫
u dθ ≤

∫
v dθ.

(ii). (Positive homogeneity). For u ∈ B(W,BW ), a ∈ R, and b ∈ R+,∫
(a+ bu) dθ = a+ b

∫
u dθ.

(iii). For u ∈ B(W,BW ), ∫
u dθ′ = −

∫
−u dθ.

(iv). (Co-monotonic additivity). If u, v ∈ B(W,BW ) are comonotonic,∫
(u+ v) dθ =

∫
u dθ +

∫
v dθ.

When θ is convex, we additionally obtain the following properties.

Lemma 9 Let θ be a convex capacity.

(i). For u ∈ B(W,BW ), ∫
u dθ = min

{∫
u dp|p ∈ core(θ)

}
.

(ii). (Super-additivity). For u, v ∈ B(W,BW ),∫
(u+ v) dθ ≥

∫
u dθ +

∫
v dθ.

Note that the inequality is reversed when θ is concave.

(iii). For u ∈ B(W,BW ), ∫
u dθ ≤

∫
u dθ′.
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D Iterated Utility vs. Non-iterated Utility

Consider a probability measure on (W∞,BW∞) of the form: p = p0× p1× p2×· · · , where

p0 is a probability measure in core(θ). pt is a measurable selection of w 7→ core(θw),

that is, pt is a stochastic kernel, for each t ≥ 1, and the product measure is constructed

in a standard manner. Denote the set of all such measures by Pw0 . Note that in the

construction of the product, any combination of a stochastic kernel is permitted. Though

we have adopted the iterated utility in our analysis, another candidate could be

α max
p∈Pw0

Ep

[
∞∑
t=0

βtyt

]
+ (1− α) min

p∈Pw0

Ep

[
∞∑
t=0

βtyt

]
,

which we will refer to as the non-iterated α−MEU.

In the expected utility framework, the iterated utility and the non-iterated utility al-

ways coincide with each other because the law of iterated expectation holds. However,

in the presence of ambiguity, this does not necessarily hold. This problem is severe es-

pecially when α is strictly between zero and one. When α is either zero or one, there is

a well-known condition under which both utilities are the same, which is called the rect-

angularity property (Epstein and Schneider 2003a). However, when α ∈ (0, 1), even the

rectangurality property does not guarantee the law of iterated expectation, and thus these

two utility concepts do not coincide with each other (see Schroder (2011) and Beissner,

Lin, and Riedel (2020) for the further discussions). Indeed, the set of probability mea-

sures constructed above satisfies the rectangularity property, but this does not resolve the

problem when α ∈ (0, 1). Hence, a choice must be made between two obvious approaches

to model preferences.

When the approach based on the non-iterated utility is adopted, though simple, a

dynamic inconsistency problem arises because the law of iterated expectation does not

hold. Consequently, it has two drawbacks of modeling a worker’s preferences. First, be-

cause dynamic consistency is not guaranteed, we cannot exploit the dynamic programming

technique, which makes analysis quite difficult. Second, such a decision maker is naive in

the sense that she fails to foresee potential dynamic inconsistency. Hence, in the present

study, we take the approach based on the iterated utility. In this approach, the worker

is rational in the sense that dynamic consistency holds. Furthermore, such dynamic con-

sistency enables us to exploit dynamic programming technique. This approach is also

adopted by Beissner, Lin, and Riedel (2020) in a continuous-time framework. Whether

these two different approaches yield different results is a challenge for future researches.
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