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Paper closely related to Duffie-Zame (1989).
Models are not identical; ours more general in
some respects, theirs more general in others.
Common Features of the Models:

1. Uncertainty specified in terms of aK-dimensional
Brownian Motion β(t, ω).

2. J = K + 1 securities traded in continuous
time; one is usually a deterministic “bond.”

3. Securities characterized by their dividends.

4. Agents characterized by their endowments
and utility functions.
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5. A K-dimensional standard Brownian mo-
tion is a K-dimensional stochastic process
B such that

(a) B(ω, 0) = 0 almost surely (i.e. P ({ω :
B(ω, 0) = 0}) = 1)

(b) Continuity: B(ω, ·) is continuous almost
surely.

(c) Independent Increments: If 0 ≤ t0 <
t1 < · · · < tm ∈ T ,

{B(·, t1)−B(·, t0), . . . , B(·, tm)−B(·, tm−1)}
is an independent family of random vari-
ables.

(d) Normality: If 0 ≤ s ≤ t, B(·, t)−B(·, s)
is normal with mean 0 ∈ RK and co-
variance matrix (t − s)I , where I is the
K ×K identity matrix.
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6. Goal: Prove existence of equilibrium and
determine its properties.

7. What did Duffie and Zame do?

(a) Verify that an Arrow-Debreu equilibrium
exists. Induce securities prices from the
Arrow-Debreu prices.

(b) Under the endogenous assumption that
the induced securities prices satisfy a
dynamic spanning condition (the (K+
1)×K Jacobian of securities prices with
respect to the Brownian motion compo-
nents has rank K for almost all (t, ω)),
securities are dynamically complete (can
replicate any Arrow-Debreu security by
continuous trading of given securities).

(c) Show that dynamic completeness implies
that the securities prices induced by the
Arrow are equilibrium prices in the se-
curities market.
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8. Obvious approach: Show that for a generic
(open dense, residual, or relatively preva-
lent) set of primitives, the spanning condi-
tion holds for the endogenously detemined
Arrow-Debreu equilibrium prices.

(a) Nobody’s done it.

(b) We tried and failed.
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9. Approach Think about Brownian Mo-
tion as a random walk, and take limits.
This is essentially what we do.

(a) We prove existence of a securities mar-
ket equilibrium, in which markets are dy-
namically complete, without the endoge-
nous assumption.

(b) Theorem is universal, not generic.

• The spanning condition needed for com-
plete markets follows from the way in-
formation is revealed in the model.

• Given a continuous-time model, we can
choose discrete approximations from
the generic set on which Duffie-Shafer
and Magill-Shafer show equilibrium ex-
ists.
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10. Suppose U is an open subset of RK . f :
U → R is analytic if, for every x ∈ U ,
f can be represented on a neighborhood of
x by a power series with positive radius of
convergence. Key Facts:

• If an analytic function f is zero on a set
of positive measure, then f is identically
zero.

• Analytic Implicit Function Theorem:
In the usual statement of the Implicit
Function Theorem, if the given function
is analytic, the implicitly defined func-
tion is also analytic.
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Our Model:

1. Trade and consumption occur over a com-
pact time interval [0, T ], endowed with a
measure ν which agrees with Lebesgue mea-
sure on [0, T ) and such that ν({T}) = 1.

2. The information structure is represented by
a filtration {Ft : t ∈ [0, T ]} on a prob-
ability space (Ω,F , ν). There is a stan-
dard K-dimensional Brownian motion β =
(β1, . . . , βK) adapted to the filtration. Let
I(t, ω) = (t, β(t, ω)).

3. There are I agents i = 1, . . . , I . The en-
dowment of the agent i is a process

ei(t, ω) =

⎧⎪⎪⎨
⎪⎪⎩
fi(I(t, ω)) if t ∈ [0, T )
Fi(I(T, ω)) if t = T

where fi : [0, T ] × RK → R++ and Fi :
{T} × RK → R++ are analytic. e(t, ω) =∑I
i=1 ei(t, ω) is the aggregate endowment.
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4. There are J + 1 = K + 1 tradable securi-
ties (indexed by j = 0, . . . , J) which pay
dividends

Aj(t, ω) =

⎧⎪⎪⎨
⎪⎪⎩
gj(I(t, ω)) if t ∈ [0, T )
Gj(I(T, ω)) if t = T

where gj : [0, T ] × RK → R+ and Gj :
{T} × RK → R++ are analytic functions.
Net supply of security j is ηj ∈ {0, 1}.

5.

∃m>0 e(t, ω) +
J∑
j=0

ηjAj(t, ω) ≥ m

∃r>0 e(t, ω) +
J∑
j=0

Aj(t, ω) ≤ r + er|β(t,ω)|
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6. Nondegeneracy Condition: for some β ∈
RK, the (K + 1)×K Jacobian matrix of G
with respect to β has rank K.

7. Agent i is initially endowed with determinis-
tic security holdings eiA = (eiA0

, . . . , eiAJ) ∈
RJ+1

+ satisfying

I∑
i=1
eiAj = ηj

The initial security holdings are assumed
nonnegative; otherwise, an agent might never
be able to make good on his/her initial short
position, and hence no equilibrium would
exist.
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8. Utility function of agent i:

Ui(c) = Eν

[∫ T
0
hi(ci(t, ·), β(t, ·), t)dt +Hi(ci(T, ·), β(T, ·))

]

where the functions hi : R+×RK×[0, T ] →
R ∪ {−∞} and Hi : R++ × RK → R ∪
{−∞} are analytic on R++ × RK × [0, T ]
and R++ × RK respectively and satisfy

limc→0+
∂hi
∂c

= ∞ uniformly in (β, t)

limc→0+
∂Hi
∂c

= ∞ uniformly in β

limc→∞
∂hi
∂c = 0 uniformly in (β, t)

limc→∞
∂Hi
∂c

= 0 uniformly in β
limc→0+ hi(c, β, t) = hi(0, β, t) uniformly in (β, t)
limc→0+ Hi(c, β) = Hi(0, β) uniformly in β
∂hi
∂c

∣∣∣∣∣(c,β,t) > 0 for c ∈ R++

∂2hi
∂c2

∣∣∣∣∣(c,β,t) < 0 for c ∈ R++

∀c>0∃M∈R∀(β,t)
∂hi
∂c

∣∣∣∣∣(c,β,t) ≤ M

∀c>0∃M∈R∀β ∂Hi
∂c

∣∣∣∣∣(c,β)
≤ M

Conditions satisfied by all state-independent
CARA, CRRA utility functions.
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9.(a) Consumption price process is pC(t, ω) ∈
L∞([0, T ] × Ω).

(b) Securities price process is Itô process pA =
(pA0

, . . . , pAJ) : Ω× [0, T ] → RJ+1 such
that associated cumulative gains process

γj(t, ω) = pAj(t, ω)+
∫ t
0 pC(s, ω)Aj(s, ω) ds

is a martingale. Securities are priced cum
dividend at time T .

(c) Trading strategy for agent i:

• zi ∈ L2(γ), i.e. if the instantaneous
volatility matrix of pA is σ, then zi ·
σ ∈ L, i.e. zi is Itô integrable with
respect to γ.

• ∫
zidγ is a martingale (Harrison-Kreps

admissibility condition).
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10. Budget set for agent i is the set of all con-
sumption plans ci such that there exists trad-
ing strategy zi such that ci and ti satisfy
budget constraint

pA(t, ω) · zi(t, ω)

= eiA(ω) · pA(0, ω)

+
∫ t
0 zi dγ +

∫ t
0 pC(s, ω)(ei(s, ω) − ci(s, ω))ds

for almost all ω and all t ∈ [0, T )

0 = pA(0, ω) · eiA(0, ω) +
∫ T
0 zi dγ

+
∫ T
0 pC(s, ω)(ei(s, ω) − ci(s, ω))ds

+pC(T, ω)(ei(T, ω) − ci(T, ω))

for almost all ω

11. Demand maximizes utility over the budget
set.

12. Equilibrium: pA, pC , zi, ci in demand set so
that markets clear: for almost all (t, ω)
I∑
i=1
ziAj(t, ω) = ηj for j = 0, . . . , J

I∑
i=1
ci(t, ω) =

I∑
i=1
ei(t, ω) +

J∑
j=0

ηjAj(t, ω)
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Theorem 1 The continuous-time finance model
just described has an equilibrium, which is
Pareto optimal.

• The equilibrium securities prices and con-
sumption prices are given by analytic func-
tions of I(t, ω) for t ∈ [0, T ), and as (sep-
arate) analytic functions of I(T, ω) for
t = T .

• There is a closed set of measure zero in
[0, T )×Ω and an analytic function of I(t, ω)
defined on the complement of that set such
that the equilibrium trading strategies equal
this function on its domain.

• The equilibrium prices are effectively dy-
namically complete: any integrable con-
sumption process which is adapted to the
Brownian filtration can be replicated by a
unique trading strategy.

• (Not Yet Formulated) The equilibria of
discrete approximating models converge to
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equilibria of the continuous-time model.
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Outline of Proof:

1. As in Raimondo (2005) (single agent model,
with or without dynamic completeness) hy-
perfinite time axis is T = {0,ΔT, 2ΔT, . . . , T̂},
where ΔT 
 0 is an infinitesimal in non-
standard analysis.

2. If we used original nonstandard construc-
tion of Brownian motion (Anderson (1976)),
each node would have 2K successor nodes,
ruling out dynamic completeness if K >
1. Instead, construct a hyperfinite random
walk β̂ in RK such that each node hasK+1
successor nodes and

E(β̂(t + ΔT, ·)|(t, ω0)) = β̂(t, ω0)

E(Δβ̂i(t, ω))(Δβ̂j(t, ω)) =
δij
ΔT

Show that β(t, ω) = ◦β̂(t̂, ω) is a standard
Brownian motion (not quite covered in the
earlier papers in nonstandard probability).
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3. Use the analytic functions to induce endow-
ments, utility functions, and security payoffs
in the hyperfinite economy.

4. Equilibrium: p̂A, p̂C , ẑi, ĉi in demand sets so
that markets clear: all t ∈ T and all ω ∈ Ω̂
I∑
i=1
ẑi(t, ω) = (η0, . . . , ηJ)

I∑
i=1
ĉi(t, ω) =

I∑
i=1
êi(t, ω) +

J∑
j=0

ηjÂj(ω, t)

5. Perturb endowments and security dividends
by at most (ΔT )2 to ensure existence of
Pareto optimal equilibrium with dynamically
complete securities prices in hyperfinite econ-
omy (Duffie-Shafer (1985,1986), Magill-Shafer).

• Does not rule out determinant being in-
finitesimal (“infinitesimal Hart points”)

• Infinitesimal Hart points in hyperfinite
model will become Hart points in con-
tinuous time model

• Need to show that infinitesimal Hart points
are a set of Loeb measure zero
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6. Marginal utility of consumption is infinite at
zero, aggregate consumption is strictly pos-
itive at each node, so equilibrium consump-
tions of all agents strictly positive (possibly
infinitesimal) at each node.

7. Let Δ be open I − 1-dimensional simplex
in RI

++. Pareto optimality implies there ex-
ists λ = (λ1, . . . , λI) ∈ *Δ such that at
each node (t, ω), there is a positive constant
μ(t, ω) such that

λ1*
∂h1
∂c

(ĉi(t, ω), β̂(t, ω), t) = · · · = λI*
∂hI
∂c

(ĉI(t, ω), β̂(t, ω), t) = μ(t,

λ1*
∂H1
∂c

(ĉi(T̂ , ω), β̂(t, ω)) = · · · = λI*
∂HI
∂c

(ĉI(T̂ , ω), β̂(t, ω)) = μ(T̂ ,

Let ĉ(t, ω) = ∑I
i=1 ĉi(t, ω). By Analytic Im-

plicit Function Theorem, there exist stan-
dard analytic functions

μ(t, ω) = *π̂((λ1, · · · , λI), ĉ(t, ω), β̂(t, ω), t) for t < T̂

μ(T̂ , ω) = *Π̂((λ1, · · · , λI), ĉ(T̂ , ω), β̂(T̂ , ω))

ĉi(t, ω) = *ψ̂i((λ1, · · · , λI), ĉ(t, ω), β̂(t, ω), t) for t < T̂

ĉi(T̂ , ω) = *Ψ̂i((λ1, · · · , λI), ĉ(T̂ , ω), β̂(T̂ , ω))
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8. p̂C(t, ω) = μ(t, ω) are the Arrow-Debreu
prices of consumption. Since total supply
(from endowments and dividends) is uni-
formly bounded below, aggregate consump-
tion uniformly bounded below, pC is uni-
formly bounded above by a standard num-
ber.

9. First order conditions imply that γ̂j is a hy-
perfinite martingale, and that p̂Aj is given
by the nonstandard extensions of standard
analytic functions evaluated at λ̂, β̂, and the
perturbed endowments and dividends.

10. There is a standard analytic function ρ such
that

p̂A(t, ω) = *ρ(λ, Î(t, ω)) +O(ΔT )

so define

pA(t, ω) = ◦p̂A(t̂, ω)

= ρ(◦λ, I(t, ω))

is a standard analytic function of I(t, ω).
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11. The (K+1)×K Jacobian matrix of pA with
respect to the Brownian motion has rank K
at one point (T, β); the entries are analytic,
hence continuous, so the matrix has rank K
on a set (t, β) of positive Lebesgue measure,
hence the matrix has rank K everywhere ex-
cept a closed set of Lebesgue measure zero.

12. Since the distribution of β is absolutely con-
tinuous with respect to Lebesgue measure,
the set of (t, ω) such that the matrix has
rank < K is a set of measure zero: that’s
the spanning condition!

13. Form a continuous-time economy by apply-
ing Loeb measure construction to Ω̂. pA,
pC, c1, . . . , cI is a candidate equilibrium for
the Loeb economy. Verify this is in fact
an equilibrium: this process goes back to
Brown-Robinson

(a) Since p̂A is dynamically complete in the
hyperfinite model, there is a unique nonan-
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ticipating matrix process σ̂ such that γ̂(t, ω) =
∫ t
0 σ̂ dβ̂. σ̂ is given by the nonstandard
extension of a standard analytic function,
so

σ(t, ω) = ◦σ̂(t, ω) = Σ(I(t, ω))

is a standard analytic function of I. The
cumulative gains process is

γ(t, ω) =
∫ t
0 pC(s, ω)A(s, ω) ds+ pA(t, ω)

= ◦ ∫ t̂
0 p̂C(s, ω)Â(s, ω) ds + ◦p̂A(t, ω)

= ◦γ̂(t̂, ω)

= ◦ ∫ t̂
0 σ̂ dβ̂

=
∫ t
0
◦σ̂ dβ

(Anderson (1976), adapted to this hyper-
finite random walk).
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(b) zi is Itô integrable with respect to γ and∫
zi dγ is a martingale. ẑi does not chat-

ter because it is (except at the null set
of infinitesimal Hart points) the nonstan-
dard extension of an analytic function of
Î.

(c) ci is in i’s budget set (using the trading
strategy zi) because (Anderson (1976),
adapted to this hyperfinite random walk)

◦ ∫ t
0 ẑi dγ̂ =

∫ ◦t
0 zi dγ
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(d) Suppose c̄i is in i’s budget set, using trad-
ing strategy z̄i, and c̄i yields higher util-
ity. Since pC is bounded above, mar-
kets are dynamically complete, and In-
ada conditions hold, we may assume that
there is some m > 0 such that c̄i(t, ω) ≥
m for all (t, ω). Since

∫
z̄i dγ is a martin-

gale, c̄i ∈ L1([0, T ] × Ω) and
∫
[0,T ]×Ω pC (c̄i − ei − z̄iA) = z̄i(0)pA(0)

Lift c̄i to an element ˆ̄ci ∈ SL1(T , Ω̂),
i.e. ◦ˆ̄ci(t, ω) = c̄(◦t, ω) almost surely.
We can arrange that ˆ̄ci(t, ω) ≥ m for
all (t, ω); it follows that

◦Ûi(ˆ̄ci) = Ui(c̄i) > Ui(ci) = ◦Ûi(ĉi)

Because the hyperfinite market is dynam-
ically complete, there is a unique hyper-
finite trading strategy ˆ̄zi which produces
the consumption stream ˆ̄ci so

∫
T ×Ω̂ p̂C

(
ˆ̄ci − êi − ˆ̄ziA

)
= ˆ̄zi(0)p̂A(0)
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ˆ̄zi(0)p̂A(0) might exceed êA(0)p̂A(0); how-
ever, since the hyperfinite stochastic in-
tegral and the Itô integral agree up to an
infinitesimal, the difference is infinites-
imal. So we can reduce ˆ̄ci by an in-
finitesimal everywhere, increasing the se-
curity holdings (and hence the dividends
received) everywhere, and to ensure that

ˆ̄zi(0)p̂A(0) ≤ êA(0)p̂A(0)

so the reduced ˆ̄ci lies in i’s budget set.
The reduction reduces utility by at most
an infinitesimal, so we get a contradic-
tion of the fact that ĉi is in i’s demand
set. This contradiction shows that our
candidate continuous-time equilibrium is
in fact an equilibrium of the Loeb econ-
omy.
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(e) Since the equilibrium prices, consump-
tions, and strategies in the Loeb economy
are given by an analytic function of I, we
can use the same analytic functions to
define prices, consumptions and strate-
gies in the original economy. Since the
Loeb economy has the same distribution
as the orignal economy, the prices, con-
sumptions and strategies form an equi-
librium of the original economy.
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