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1. INTRODUCTION

We consider a voluntarily repeated game in a large society of homogeneous

players. Players are randomly matched to play a two-person prisoner’s dilemma,

and, after each round of play, they can choose whether to continue playing the

game with the same partner or not. Each direct interaction (a partnership)

is voluntarily separable, and, moreover, there is no information flow to other

partnerships. In a partnership, there is a merit of mutual cooperation but there

is a gain by free-riding on the partner’s cooperation as well. There are many

real-world situations which fit this model. Borrowers can move from a city to

another after defaulting. Workers can shirk and then quit the job.

We consider boundedly rational players who are endowed with a pure strategy

to play the voluntarily repeated game and develop a general framework of evolu-

tionary stability that can be applied to general component games. A voluntarily

repeated game is an extensive form game, and thus there are many strategies

that only differ in the off-path. Hence invasion concept needs to be carefully de-

fined. We extend Neutrally Stable Distribution (NSD) concept to our extensive

form model, under which no other strategy earns strictly higher payoff than the

incumbents do.

Known disciplining strategies such as trigger strategies (Fudenberg and Maskin,

1986) and contagion of defection (Kandori, 1992, and Ellison, 1994) do not sustain

cooperation in our model. There are two reasons. First, personalized punishment

is impossible due to the ability to end the partnership unilaterally and the lack

of information flow to the future partners. Second, the large society and random

death make it impossible to spread defection in the society to eventually reach

the original deviator. Our model describes a large, anonymous, and member-

changing society, which needs a different type of discipline from those of a society

of directly interacting long-run players.

Previous literature on voluntarily repeated games focused on symmetric strat-

egy distribution in which all (rational) players play the same strategy and showed
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that a gradual-cooperation strategy sustains eventual cooperation (Datta, 1996,

Kranton 1996a, and Ghosh and Ray, 1997) for many-action prisoner’s dilemma as

the component game. By contrast, we consider the ordinary two-action prisoner’s

dilemma (and thus gradual increase in the cooperation level is not feasible) and

both symmetric strategy distributions and asymmetric strategy distributions in

which multiple strategies co-exist in the population. Among asymmetric strategy

distributions, some can be considered as similar to a symmetric distribution in

the sense that there is no voluntary break-up on the equilibrium path. (These are

called single-norm strategy distributions.) Others are fundamentally asymmetric

with voluntary break-ups, called multi-norm strategy distributions. Asymmetric

strategy distributions among homogeneous players has not been considered in the

literature.

To make the analysis as thorough as possible, we focus on simple strategy

NSDs, consisting of simple strategies which ends the partnership as soon as the

observed action path is not acceptable. Since a deviator can unilaterally end a

partnership, no other punishment can achieve a lower continuation payoff than

ending the partnership. Moreover, simple strategies have natural interpretation

of social behavior of boundedly rational players, following a norm and escaping

from norm-violators.

Single-norm NSDs require sufficiently long periods of trust-building such that

partners play (D,D) but keep the partnership. The logic is the same as the

gradual cooperation literature that deviators are punished by a low payoff of new

partnerships to start trust-building again. We identify a relationship between the

death rate (discount factor) and the sufficient length of trust-building periods.

By contrast, multi-norm NSDs can start the cooperation periods earlier than

single-norm NSDs, thanks to possible exploitation by another strategy, which

also serves as a punishment. Hence under the same payoff parameters and death

rate, multi-norm NSD is more efficient than the most efficient single-norm NSD.

The idea that diverse strategies make it valuable to keep a partnership with the
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same-strategy partner is similar to Ghosh and Ray (1997) and Rob and Yang

(2005) of incomplete information model. We show that diverse strategies arise in

a complete information, homogeneous population game.

The trust-building periods can be viewed as a signal to distinguish cooperative

strategies from others. Then it is natural to extend the model to allow cheap-talk.

When cheap-talk is introduced at the beginning of a new partnership, the most

efficient NSD is the unique NSD that cannot be invaded by equilibrium entrants

(Swinkels, 1992).

This paper is organized as follows. In Section 2, we introduce the formal model

and stability concepts. In Section 3, we give necessary and sufficient conditions

for single-norm NSD. In Section 4, we analyze multi-norm NSD. In Section 5 we

discuss extensions including the cheap-talk model and give concluding remarks.

2. MODEL AND STABILITY CONCEPTS

2.1. Model

Consider a society with a continuum of players, each of whom may die in each

period 1, 2, . . . with probability 0 < (1−δ) < 1. When they die, they are replaced

by newly born players, keeping the total population constant.

When a player is newly born, he enters into the matching pool where players

are randomly paired to play a Voluntarily Repeated Prisoner’s Dilemma (VRPD)

as follows.

In each period, players play the following Extended Prisoners’ Dilemma (EPD).

First, they play ordinary one-shot prisoners’ dilemma, whose actions are denoted

as Cooperate and Defect. After observing the play action profile of the period by

the two players, they choose simultaneously whether or not they want to keep the

match into the next period (action k) or bring it to an end (action e). Unless both

choose k, the match is dissolved and players will have to start the next period

in the matching pool and be randomly paired to play another VRPD anew. In

addition, even if they both choose k, partner may die with probability 1−δ which
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forces the player to go back to the matching pool next period. If both choose

k and survive to the next period, then the match continues, and the matched

players play EPD again.

Assume that there is limited information available to play EPD. In each pe-

riod, players know the VRPD history of their current match but have no knowl-

edge about the history of other matches in the society.

In each match, a profile of play actions determines the players’ instantaneous

payoffs for each period while they are matched. We denote the payoffs associ-

ated with each play action profile as: u(C, C) = c, u(C, D) = `, u(D,C) = g,

u(D,D) = d with the ordering g > c > d > `. (See Table I.)

Because we assume that the innate discount rate is zero except for the pos-

sibility of death, each player finds the relevant discount factor to be δ ∈ (0, 1).

With this, life-long payoff for each player is well-defined given his own strategy

(for VRPD) and the strategy distribution in the matching pool population over

time.

Let t = 1, 2, . . . indicate the periods in a match, not the calendar time in the

game. Under the limited information assumption, without loss of generality we

can focus on strategies that only depend on t and the private history of actions

in the Prisoner’s Dilemma within a match.1 Let

Ht := {C, D}2(t−1)

be the set of partnership histories at the beginning of t ≥ 2 and let H1 := {∅}.

TABLE I

PAYOFF OF PD

P1 \ P2 C D
C c, c `, g
D g, ` d, d

1The continuation decision is observable, but strategies cannot vary depending on combina-
tions of {k, e} since only (k, k) will lead to the future choice of actions.
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DEFINITION. A pure strategy s of VRPD specifies (xt, yt)
∞
t=1 where:

xt : Ht → {C, D} specifies an action choice xt(ht) ∈ {C, D} given the partnership

history ht ∈ Ht, and

yt : Ht × {C, D}2 → {k, e} specifies whether or not the player wants to keep

or end the partnership, depending upon the partnership history ht ∈ Ht at the

beginning of t and the current period action profile.

The (infinite) set of pure strategies of VRPD is denoted as S and the set of

all strategy distributions in the population is denoted as P(S). For simplicity we

assume that each player uses a pure strategy.

We investigate stability of stationary strategy distributions in the matching

pool. Although the strategy distribution in the matching pool may be different

from the distribution in the entire society, if the former is stationary, the distribu-

tion of various states of matches (strategy pair and the “age” of the partnership)

is also stationary, thanks to the stationary death process. Hence stability of sta-

tionary strategy distributions in the matching pool implies stability of “social

states”. By looking at the strategy distributions in the matching pool, we can

directly compute life-time payoffs of players easily.

2.2. Life-time and Average Payoff in a Match

When a strategy s ∈ S is matched with another strategy s′ ∈ S, the expected

length of the match is denoted as L(s, s′) and is computed as follows. Notice

that even if s and s′ intend to maintain the match, it will only continue with

probability δ2, which is the probability that both survive to the next period.

Suppose that if no death occurs while they form the partnership, s and s′ will

end the partnership at the end of T (s, s′)-th period of the match. Then

L(s, s′) := 1 + δ2 + δ4 + · · ·+ δ2{T (s,s′)−1} =
1− δ2T (s,s′)

1− δ2
.

The expected total discounted value of the payoff stream of s within the match

with s′ is denoted as V I(s, s′). The average per period payoff that s expects to

5



receive within the match with s′ is denoted as vI(s, s′). Clearly,

vI(s, s′) :=
V I(s, s′)
L(s, s′)

, or V I(s, s′) = L(s, s′)vI(s, s′).

2.3. Life-time and Average Payoff in the Matching Pool

Next we show the structure of the life-time and average payoff of a player en-

dowed with strategy s ∈ S in the matching pool, waiting to be matched randomly

with a partner. When a strategy distribution in the matching pool is p ∈ P(S)

and is stationary, we write the expected total discounted value of lifetime payoff

streams s expects to receive during his lifetime as V (s; p) and the average per

period payoff s expects to receive during his lifetime as

v(s; p) :=
V (s; p)

L
= (1− δ)V (s; p),

where L = 1 + δ + δ2 + · · · = 1
1−δ

is the number of total days s expects to live.

A straightforward way to compute V (s; p) is to set up a recursive equation.

If p has a finite support, then we can write

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V I(s, s′)

+[δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}}+ δ2{T (s,s′)−1}δ]V (s; p)
]
,

where supp(p) is the support of the distribution p, T (s, s′) is the date at the end

of which s and s′ end the match, the sum δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}} is

the probability that s loses the partner s′ before T (s, s′), and δ2{T (s,s′)−1}δ is the

probability that the match continued until T (s, s′) and s survives at the end of

T (s, s′) and goes back to the matching pool.

Let L(s; p) :=
∑

s′∈supp(p) p(s′)L(s, s′). By computation,

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V I(s, s′) + {1− (1− δ)L(s, s′)}V (s; p)

]

=
∑

s′∈supp(p)

p(s′)V I(s, s′) + {1− L(s; p)

L
}V (s; p)
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Hence the average payoff can be decomposed2 as a convex combination of

“in-match” average payoff:

v(s; p) =
V (s; p)

L
=

∑

s′∈supp(p)

p(s′)
L(s, s′)
L(s; p)

vI(s, s′), (1)

where the ratio L(s, s′)/L(s; p) is the relative length of periods that s expects to

spend in a match with s′. In particular, if p is a monomorphic strategy distribu-

tion3consisting of a single strategy s′, then

v(s; p) = vI(s, s′).

2.4. Nash Equilibrium

DEFINITION. Given a stationary strategy distribution in the matching pool p ∈
P(S), s ∈ S is a best reply against p if for all s′ ∈ S,

v(s; p) ≥ v(s′; p),

and is denoted as s ∈ BR(p).

DEFINITION. A stationary strategy distribution in the matching pool p ∈ P(S)

is a Nash equilibrium if for all s ∈ supp(p),

s ∈ BR(p).

For any pure strategy s ∈ S, let ps be the (“monomorphic”) strategy distri-

bution consisting only of s.

LEMMA 1. For any pure strategy s ∈ S that starts with C in t = 1, ps is not a

Nash equilibrium.

2However, this means that, in general, v(s; p) 6= ∑
s′ p(s′)vI(s, s′). That is, v is not linear in

the second component. This is due to the recursive structure of the V function.
3If the partnership outcome is monomorphic, i.e., the same for all matches in the society,

then we call a strategy distribution as monomorphic outcome distribution. This distinction
becomes important in Section 5 where we consider equivalent strategies.
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PROOF: Consider a myopic strategy d̃ as follows.

t = 1: Play D and e (end the partnership) for any observation.

t ≥ 2: Since this is off-path, any action can be specified.

Clearly, d̃-strategy earns g as the average payoff under ps, which is the maximal

possible payoff. I.e., d̃ ∈ BR(ps) and s 6∈ BR(ps), which proves the assertion.

Q.E.D.

Therefore, trigger strategy used in the ordinary folk theorem of repeated pris-

oner’s dilemma cannot constitute even a Nash equilibrium. There needs to be at

least one period of (D,D) in any equilibrium.

By contrast, pd̃ consisting only of d̃-strategy is a Nash equilibrium. Against

d̃, any strategy must play one-shot PD. Hence, any strategy that starts with C in

t = 1 earns strictly smaller average payoff than that of d̃, and any strategy that

starts with D in t = 1 earns the same average payoff as that of d̃.

2.5. Neutral Stability

Recall that in an ordinary 2-person symmetric normal-form game G = (S, u),

a (mixed) strategy p ∈ P(S) is a Neutrally Stable Strategy if for any q ∈ P(S),

there exists 0 < ε̄q < 1 such that for any ε ∈ (0, ε̄q), Eu(p, (1 − ε)p + εq) ≥
Eu(q, (1− ε)p + εq). (Maynard Smith, 1982.)

An extension of this concept to our extensive form game is to require a strategy

distribution not to be invaded by a small fraction of a mutant strategy who enters

the matching pool in a stationary manner.

DEFINITION. Given ε > 0 and a (stationary) strategy distribution p ∈ P(S) in

the matching pool, a strategy s′ ∈ S invades p if for any s ∈ supp(p),

v(s′; (1− ε)p + εps′) ≥ v(s; (1− ε)p + εps′), (2)

and for some s ∈ supp(p),

v(s′; (1− ε)p + εps′) > v(s; (1− ε)p + εps′), (3)
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where ps′ is the monomorphic strategy distribution consisting only of s′.

A weaker notion of invasion that requires weak inequality only (which is used

in the notion of Evolutionary Stable Strategy) is too weak in our extensive-

form model since any strategy that is different in the off-path actions from the

incumbent strategies can invade under the weak inequality condition.

DEFINITION. A (stationary) strategy distribution p ∈ P(S) in the matching pool

is a Neutrally Stable Distribution (NSD) if, for any s′ ∈ S, there exists ε̄ ∈ (0, 1)

such that s′ cannot invade p for any ε ∈ (0, ε̄).

If a monomorphic strategy distribution consisting of a single pure strategy

s is a neutrally stable distribution, then s is called a Neutrally Stable Strategy

(NSS). The condition for s to be a NSS reduces to: for any s′ ∈ S, there exists

ε̄ ∈ (0, 1) such that, for any ε ∈ (0, ε̄),

v(s; (1− ε)ps + εps′) ≥ v(s′; (1− ε)ps + εps′).

It can be easily seen that any NSD is a Nash equilibrium.

An underlying assumption of this definition is that mutation takes place rarely

so that only single mutation occurs within the time span in which stationary

strategy distribution is formed. To compute the average payoff we need the

expected length of the life-time of a mutant strategy. Our definition requires that

the incumbents are not worse-off than mutants even if mutants stay stationarily

in the population, let alone if they die out. While we do not insist that the above

definition is the best among we can imagine, it is tractable and justifiable.

The next proposition shows that the myopic d̃-strategy can be invaded by

a trust-building strategy which initially plays D but keeps the partnership to

distinguish itself from the myopic strategy. If it meets the same strategy, they

can play C after the first period, and if it meets the myopic strategy, it does not

earn worse payoff than the myopic strategy.

LEMMA 2. Myopic d̃-strategy is not an NSS.
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PROOF: Consider the following c1-strategy.

t = 1: Play D and keep the partnership if and only if (D,D) is observed in the

current period.

t ≥ 2: Play C and keep the partnership if and only if (C, C) is observed in the

current period.

For any ε ∈ (0, 1), let p := (1− ε)pd̃ + εp1. From (1),

v(d̃; p) = d;

v(c1; p) = (1− ε)
L(c1, d̃)

L(c1; p)
vI(c1, d̃) + ε

L(c1, c1)

L(c1; p)
vI(c1, c1) > d,

since vI(c1, d̃) = d, and vI(c1, c1) = (1− δ2)d + δ2c > d. Q.E.D.

3. SINGLE-NORM, TRUST-BUILDING STRATEGY DISTRIBUTIONS

The c1-strategy that can invade the myopic d̃-strategy distribution has the

property that it keeps the partnership if and only if the sequence of action profiles

{(D,D), (C, C), (C, C), . . .} is followed in the partnership. One can interpret

the strategy as having the path {(D,D), (C, C), (C, C), . . .} as its “norm” and

punishing as soon as the norm is violated.

In the following, we restrict our attention to such strategies, to make our

analysis as complete as possible. S contains infinitely many strategies, some of

which only differ in off-path actions, and it is endless to try to characterize all

possible equilibria.

Specifically, we focus on the following simple strategies, which carry out the

maximal individually rational punishment to end a partnership if unexpected

behavior is observed. The idea of simple strategies is similar to that of Abreu’s

(1988), except that we define strategies instead of strategy profiles to fit for

our evolutionary model. There is a set of acceptable paths of action profiles

for a player/strategy, and if there is a deviation from the acceptable paths, the

player/strategy ends the partnership immediately. Because the deviator can end
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the partnership unilaterally, ending the partnership is the maximal punishment,

i.e., the optimal penal code.

Let Ω = ∪∞t=1({C, D} × {C, D, ∅})(t−1) be the set of action profile paths in a

partnership. Interpret that the first coordinate is the player’s own action and the

second coordinate is the current partner’s action. The ∅ means that any action

by the partner is not acceptable, i.e., the strategy intends to end the partnership

regardless of the observation at that point. For any q ∈ Ω, let |q| be the length

of the sequence q, i.e., the number of action profiles contained in q.

DEFINITION. Q ⊂ Ω is the set of acceptable paths if,

(1) for any q, q′ ∈ Q and any t = 1, 2, . . . , min{|q|, |q′|}, (q(1), . . . , q(t − 1)) =

(q′(1), . . . , q′(t− 1)) ⇒ q1(t) = q′1(t);

(2) for any q ∈ Q, if q2(t) = ∅ for some t, then |q| = t.

The first condition requires that if observed path up to t is the same, the

same own action is specified at t. This guarantees that the action is uniquely

determined after any acceptable observed path. The second condition means

that if a strategy intends to end the partnership at t, then the specification of

the acceptable path ends there.

DEFINITION. For any set of acceptable paths Q ⊂ Ω, a strategy s(Q) ∈ S is a

simple strategy if, in each period t,

(i) in the stage game, it plays according to the unique q1t generated by Q and

the observed path; and

(ii) in the continuation decision phase, it keeps the partnership if and only if the

observed path is contained in Q.

We can extend the ordinary C-trigger strategy to our model as a simple strat-

egy with the singleton set of acceptable path

Qtr = {(C, C)∞}.
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In this case the strategy starts the game by playing C and ends the partnership

as the punishment, as soon as deviation from (C, C) is observed. As noted after

Lemma 1, this strategy is not a candidate of NSS and thus will not be discussed

below. The myopic d̃-strategy is also a simple strategy with

Qd̃ = {(D, ∅)}.

In this section we consider single-norm simple strategy distributions, under

which no voluntary separation occurs on the play path. A single-norm distribu-

tion may consist of multiple strategies, but they are in coordination so that their

actions are mutually acceptable.

3.1. Symmetric Action Simple Strategies

In this subsection we focus on simple strategy distributions whose acceptable

paths have only symmetric action profiles. In particular, we analyze trust-building

strategies whose acceptable paths look like {(D,D), . . . , (D,D), (C, C), . . .}. Strate-

gies which revert to (D,D) after some periods of (C, C) do not earn higher average

payoffs than those that continue (C, C) forever after and thus are not candidates

of NSD. To play (C, C) at some point, the partners need some periods of (D,D)

due to Lemma 1.

DEFINITION. For any T = 1, 2, 3, . . ., let cT -strategy be the symmetric-action

simple strategy with the singleton set of acceptable paths

QcT = {(
T times︷ ︸︸ ︷

(D,D), . . . , (D,D), (C, C), (C, C), . . .)}.

We call the first T periods of cT -strategy as the trust-building periods and the

periods afterwards as the cooperation periods.

We identify a condition that strategies which differ from cT in one-step (in

particular during the cooperation periods) do not give a higher payoff than cT -

strategy.4 Let pT be the monomorphic strategy distribution consisting only of
4Note that the literal one-step deviation strategy is not feasible for our players since they

cannot play differently across partnerships. However, if cT -strategy in unimprovable by infea-
sible one-step deviation, then it is unimprovable within S.

12



cT -strategy. The average payoff of cT -strategy when pT is the stationary strategy

distribution in the matching pool is computed as follows. A match of cT against

cT continues as long as they both live and the payoff sequence is d for the first T

periods and c thereafter:

L(cT , cT ) = 1 + δ2 + · · · = 1

1− δ2
,

V I(cT , cT ) = {1 + δ2 + · · ·+ δ2(T−1)}d + (δ2T + · · · )c.

Since v(cT ; pT ) = vI(cT , cT ) = V I(cT ,cT )
L(cT ,cT )

, the average payoff is

v(cT ; pT ) = (1− δ2T )d + δ2T c. (4)

The average payoff that a player with cT -strategy expects to receive in the

partnership with another cT -strategy from t-th period on is denoted as vI(cT , cT , t)

and is called continuation average payoff in a match. It is increasing for t ≤ T ,

as less and less time is spent for trust-building, and it stays constant at c for any

t ≥ T + 1.

vI(cT , cT , t) =

{
(1− δ2(T−t+1))d + δ2(T−t+1)c if T ≥ t
c if t ≥ T + 1

Let L(s, s′, t) be the expected length of a match of s with s′ from t-th period

on; i.e., L(s, s′, t) = 1 + δ2 + · · ·+ δ2(T (s,s′)−t). When cT is matched with another

cT , L(cT , cT , t) = 1
1−δ2 for any t. If one follows cT -strategy, the continuation aver-

age payoff is vI(cT , cT , t) for L(cT , cT , t) periods, and for the rest (L−L(cT , cT , t)

periods), it is v(cT ; pT ) since it has to go through the matching pool. By con-

trast, one-step deviation from cT -strategy at t-th period (where t > T ) gets the

immediate payoff of g, but for the rest (L− 1 periods), the continuation average

payoff is v(cT ; pT ). Therefore, no one-step deviation during cooperation periods

earns higher payoff than cT -strategy if and only if

g + (L− 1)v(cT ; pT ) ≤ L(cT , cT , t)vI(cT , cT , t) + {L− L(cT , cT , t)}v(cT ; pT )

⇐⇒ g − vI(cT , cT , t) ≤ {L(cT , cT , t)− 1}[vI(cT , cT , t)− v(cT ; pT )].
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FIGURE 1. – The trust capital of cT -strategy in a match with cT .

(Parameter values: c = 10, d = 1, δ = 0.9, T = 5.)

We call the RHS of the above inequality, {L(cT , cT , t) − 1}[vI(cT , cT , t) −
v(cT ; pT )], trust capital of cT -strategy at the beginning of t-th period in a match

with another cT -strategy. It is initially zero and increases until the cooperation

periods start.

While the average gain of deviation is g−vI(cT , cT , t), the loss of future average

value is the trust capital. Since L(cT , cT , t) = 1
1−δ2 and vI(cT , cT , t) = c, the best

response condition that cT -strategy is better than any one-step deviation during

the cooperation periods is

g − c ≤ δ2

1− δ2
[c− v(cT ; pT )] ⇐⇒ v(cT ; pT ) ≤ c− (1− δ2)g

δ2
=: vBR. (5)

Since vBR is independent of the length T of trust-building periods and v(cT ; pT )

decreases as T increases, there is a lower bound to T that warrants (5).

Now we prove that in fact the best response condition (5) is the only condition

that is required for pT to be a Nash equilibrium. Let on-path history at a decision

node of t = 1, 2, 3, . . ., be the play path until the decision node of the t-th period

in a match of two cT -strategies. That is, the on-path history in PD in periods

t ≤ T is (D,D)t−1 and in periods t ≥ T + 1 is {(D,D)T , (C, C)(t−T−1)}. The

on-path history at the continuation decision phase is similarly defined.
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LEMMA 3. Take an arbitrary T = 1, 2, 3, . . .. Let pT be the stationary strategy

distribution in the matching pool, consisting only of cT -strategy.

(a) Any strategy that ends the match in some period t = 1, 2, . . . along on-path

history is not a best reply against pT .

(b) Any strategy that chooses C at some t < T + 1 along on-path history is not

a best reply against pT .

(c) Let s be any strategy that chooses D at some t ≥ T +1 along on-path history.

Then v(cT ; pT ) ≥ v(s; pT ) if and only if v(cT ; pT ) ≤ vBR.

PROOF: See Appendix.

In the explicit expression of the parameters, the best response condition can

be written as
g − c

c− d
≤ δ2(1− δ2T )

1− δ2
.

Given (G, T ), define δG(T ) as the solution to

g − c

c− d
=

δ2(1− δ2T )

1− δ2
.

Then the best response condition (5) is satisfied if and only if δ ≥ δG(T ). It is

easy to see that

δG(1) =

√
g − c

c− d
> · · · > δG(∞) =

√
g − c

g − d
.

Although δG(1) may exceed 1, δG(∞) < 1. Hence for any δ > δG(∞), there

exists the minimum length of trust building periods that warrants the best re-

sponse condition;

τ(δ,G) := argminτ∈<++{δG(τ) | δ ≥ δG(τ)}.

(See Figure 5 in Section 4.3.)

PROPOSITION 1. For any G and any δ ∈ (δG(∞), 1), the monomorphic dis-

tribution pT consisting only of cT -strategy is a Nash equilibrium if and only if

T ≥ τ(δ,G).
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PROOF: (Can be omitted.) Lemma 3 implies that no strategy which differ on the

play path from cT -strategy is better off if and only if T is sufficiently long so that

(5) holds, i.e., T ≥ τ(δ,G). Strategies that differ from cT -strategy off the play

path do not give a higher payoff. Q.E.D.

Proposition 1 shows that for sufficiently high survival probabilities and suffi-

ciently long trust-building periods, voluntarily repeated cooperation is sustained.

Note that the lower bound to the discount factor (as δ2) that sustains the trigger-

strategy equilibrium of the ordinary repeated prisoner’s dilemma is
√

g−c
g−d

=

δG(∞). This means that cooperation in VRPD requires more patience.

Next we investigate whether the monomorphic strategy distribution pT , when

it is a NE, is neutrally stable. In general, in order to check whether a Nash

equilibrium strategy is a NSS, we only need to consider mutants that are best

replies to the Nash equilibrium strategy.

LEMMA 4. Suppose p ∈ P(S) is a NE. If a pure strategy s′ ∈ S invades p, then

s′ is an alternatvie best reply to p, i.e., s′ ∈ BR(p).

PROOF: (Obvious from (1). Can be omitted.) See Appendix.

There are only two kinds of strategies that may become alternative best replies

to pT . The obvious ones are those that differ from cT -strategy off the play path.

These will give the same payoff as cT -strategy and therefore cannot invade pT .

The other kind is the strategies that play D at some point in the cooperation

periods. When T > τ(δ,G), however, Lemma 3 (c) implies that such strategies

are not alternative best reply. Therefore cT -strategy is NSS for this case.

It may happen that (δ,G) allow an integer τ(δ,G). For this case, we consider

an alternative best reply to pT (T = τ(δ,G) hereafter) which earns the highest

payoff when meeting itself. Among alternative best replies (that play D at some

point in the cooperation periods), cT+1 earns the highest payoff when meeting

itself. It suffices to identify a condition that cT+1-strategy cannot invade pT .
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For any T , let pT+1
T (α) = αpT + (1− α)pT+1 be a two-strategy distribution of

cT and cT+1.

LEMMA 5. For any δ ∈ (δG(∞), 1) and any T = 0, 1, 2 . . ., v(cT ; pT+1
T (α)) is

strictly increasing and concave function of α.

PROOF: See Appendix.

0.2 0.4 0.6 0.8 1

4.2

4.4

4.6

4.8

5

v(cT+1; p
T+1
T (α))

v(cT ; pT+1
T (α))

α

vBR

FIGURE 2. – The value functions of cT -strategy and cT+1-strategy when T =
τ(δ,G).

(Parameter values: g = 10, c = 6, d = 1, ` = −1, δ = 2√
5
, T = τ(δ,G) = 1.)

LEMMA 6. For any δ ∈ (δG(∞), 1) and any T = 0, 1, 2 . . . such that T ≤ τ(δ,G),

v(cT+1; p
T+1
T (α)) is strictly increasing and convex function of α.

PROOF: See Appendix.

cT+1-strategy cannot invade pT if and only if the slope of v(cT ; pT+1
T (α)) is

strictly smaller than the slope of v(cT+1; p
T+1
T (α)) at α = 1, see Figure 2.
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LEMMA 7. Take any G and any δ ∈ (δG(∞), 1). Let T = τ(δ,G). Then

∂v(cT ; pT+1
T (α))

∂α

∣∣∣
α=1

<
∂v(cT+1; p

T+1
T (α))

∂α

∣∣∣
α=1

if and only if

[1− δ2(T+1)](g − `) < c− d. (6)

PROOF: (By computation. Can be omitted.) See Appendix.

Hence, if we define τ̂(δ,G) implicitly as the solution to

[1− δ2(T+1)](g − `) = c− d,

then cτ(δ,G)+1-strategy cannot invade pτ(δ,G) if and only if τ(δ,G) ≥ τ̂(δ,G).

To interpret (6), notice that L(cT , cT ) = 1 + δ2 + · · · and L(cT+1, cT ) =

1 + δ2 + · · ·+ δ2T . Hence the condition (6) is equivalent to

(g − `)L(cT+1, cT ) < (c− d)L(cT , cT ) (7)

at T = τ(δ,G). The RHS can be interpreted as the relative merit of cT -strategy

against cT+1-strategy (to start cooperating one period early when meeting itself)

and the LHS is the relative merit of cT+1-strategy (when meeting the other strat-

egy). As δ increases (when G is fixed), T must increase to keep the equality (6).

Thus τ̂ is an increasing function of δ. (See Figure 5 in Section 4.3.)

In sum, we have the following parametric condition for the existence of single-

norm symmetric NSS.

PROPOSITION 2. (a) For any G and any δ > δG(∞) such that δ 6= δG(T ) for

any T , cT -strategy is NSS for any T ≥ τ(δ,G).

(b) For any G and any δ > δG(∞) such that δ = δG(T ) for some T , cT -strategy

is NSS if and only if T = τ(δ,G) ≥ τ̂(δ,G).

In words, when δ is large enough, voluntarily repeated cooperation after trust-

building is NSS with sufficient number of trust-building periods, even though

myopic defection is not.
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3.2. Asymmetric Action Simple Strategies

Next, we allow asymmetric action profiles in the acceptable paths. Again, if C

is to be played on the play path, at least one period of (D,D) is required, and thus

the equilibrium strategies have some trust-building periods. Let us focus on the

one alternating (C, D) and (D,C) after the trust-building periods, which gives

the most efficient and symmetric outcome when 2c < g + `. (Other sequences

can be analyzed similarly, and one can achieve the same payoffs by a symmetric

strategy combinations, if the model is extended to allow role-dependent actions

or correlated actions.)

Consider a two-strategy distribution consisting of the following simple strate-

gies.

DEFINITION. For any T = 1, 2, . . ., aT -strategy is a simple strategy with the set

of acceptable paths

QaT = {(
T times︷ ︸︸ ︷

(D,D), · · · (D,D), (C, D), (D,C), . . .),

(

T times︷ ︸︸ ︷
(D,D), · · · (D,D), (C, C), (C, C), . . .)}.

DEFINITION. For any T = 1, 2, . . ., bT -strategy is a simple strategy with the set

of acceptable paths

QbT = {(
T times︷ ︸︸ ︷

(D,D), · · · (D,D), (D,C), (C, D), . . .),

(

T times︷ ︸︸ ︷
(D,D), · · · (D,D), (D,D), (C, C), (C, C) . . .), }.

If aT met aT , the play path is the same as cT meeting cT . If aT met bT , the

play path after T periods of trust-building alternates action profiles (C, D) and
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(D,C). If bT met bT , the play path is the same as cT+1 meeting cT+1. Hence

V I(aT , bT ) = (1 + δ2 + · · ·+ δ2(T−1))d + δ2T (1 + δ4 + · · · )` + δ2(T+1)(1 + δ4 + · · · )g
=

1− δ2T

1− δ2
d +

δ2T ` + δ2(T+1)g

1− δ4
,

V I(bT , aT ) = (1 + δ2 + · · ·+ δ2(T−1))d + δ2T (1 + δ4 + · · · )g + δ2(T+1)(1 + δ4 + · · · )`
=

1− δ2T

1− δ2
d +

δ2T g + δ2(T+1)`

1− δ4
.

Let pb
aT (α) be a two-strategy distribution with the support {aT , bT} such that

α of the population uses aT and (1−α) uses bT . Since any kind of match continues

ad infinitum, L(aT , aT ) = L(aT , bT ) = L(bT , bT ) = 1
1−δ2 .

v(aT ; pb
aT (α)) = α{(1− δ2T )d + δ2T c}+ (1− α){(1− δ2T )d +

δ2T ` + δ2(T+1)g

1 + δ2
}

v(bT ; pb
aT (α)) = α{(1− δ2T )d +

δ2T g + δ2(T+1)`

1 + δ2
}

+(1− α){(1− δ2(T+1))d + δ2(T+1)c}. (8)

By computation

[v(aT ; pb
aT (α))− v(bT ; pb

aT (α))]
1 + δ2

δ2T

= α(1 + δ2){d− `− (g − c) + δ2(c− d)} − {(d− `)− δ2(g − c) + δ4(c− d)}.

Note that

lim
δ→1
{d− `− (g − c) + δ2(c− d)} = 2c− (g + `).

Therefore, 2c < g + ` if and only if v(aT ; pb
aT (α)) crosses v(bT ; pb

aT (α)) from the

above as α increases, i.e., there exists ᾱ(δ) such that

α R ᾱ(δ) ⇐⇒ v(bT ; pb
aT (α)) R v(aT ; pb

aT (α)),

so that when α > ᾱ(δ) (resp. α < ᾱ(δ), bT -strategy does better than aT -strategy

and thus α decreases (resp. increases). By computation,

ᾱ(δ) =
(d− `)− δ2(g − c) + δ4(c− d)

(1 + δ2){d− `− (g − c) + δ2(c− d)} .
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Since limδ→1 ᾱ(δ) = 1
2
, for sufficiently large δ, ᾱ(δ) ∈ (0, 1) is warranted.

By a similar logic to the one for the symmetric strategy profile, we can prove

the best response condition that the alternating action distribution is NE (and

NSD) for sufficiently long trust-building.

PROPOSITION 3. Assume g + ` > 2c. For sufficiently large δ, there exists T̃ (δ)

such that for any T ≥ T̃ , the two-strategy distribution pb
aT (ᾱ(δ)) is a NSD.

PROOF: Similar to Propositions 1 and 2 and is omitted.

4. MULTI-NORM SIMPLE STRATEGY DISTRIBUTIONS

The literature on voluntarily repeated games has concentrated on single-norm,

monomorphic equilibria so that no voluntary break-up occurs, except for sorting

out inherent defectors under incomplete information case. (See concluding re-

marks 5.4.) We now investigate equilibria under which voluntary break-ups occur

on the play path. There is no reason to believe that such equilibria do not exist

or are less efficient than single-norm equilibria. Recall that our model is of com-

plete information and with homogeneous players. Hence equilibrium break-up

is interpreted as society having multiple norm, i.e., the acceptable paths of the

players are not in coordination.

Below we deal with only symmetric-action simple-strategy distributions, i.e.,

cT -strategies with different trust-building periods T , but a similar analysis can

be done for asymmetric-action simple-strategy profiles.

4.1. Bimorphic Distribution

We investigate conditions that the two-strategy distribution (called bimorphic

distribution) of pT+1
T (α) = αpT +(1−α)pT+1 is a NSD for some αT+1

T ∈ (0, 1). For

a bimorphic distribution pT+1
T (αT+1

T ) to be a NSD, the following two conditions

must hold.
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Payoff Equalization and Within Distribution Stability:

α R αT+1
T ⇐⇒ v(cT+1; p

T+1
T (α)) R v(cT ; pT+1

T (α)). (9)

If the above is satisfied, at αT+1
T , cT -strategy and cT+1-strategy earn the same

average payoff, and when α > αT+1
T (resp. α < αT+1

T ), cT+1-strategy fares bet-

ter than cT -strategy so that α decreases (resp. cT -strategy fares better so that

α increases). Hence the bimorphic distribution pT+1
T (αT+1

T ) cannot be invaded

by strategies that have the same play path as cT or cT+1 under the bimorphic

distribution.

Best Response Condition: Let v̂T+1
T := v(cT ; pT+1

T (αT+1
T )) = v(cT+1; p

T+1
T (αT+1

T )).

For any t ≥ T + 2,

g + (L− 1)v̂T+1
T ≤ L(cT , cT , t)vI(cT , cT , t) + {L− L(cT , cT , t)}v̂T+1

T . (10)

This condition implies that no one-step deviation during the cooperation pe-

riods of cT+1-strategy can earn average payoff higher than cT or cT+1 strategy.

Since cT and cT+1-strategy have the same average payoff under pT+1
T (αT+1

T ), the

RHS of (10) is the continuation average payoff of either strategy.

LEMMA 8. For any s ∈ S such that s imitates cT or cT+1 during their trust-

building periods and chooses D at some point in their cooperation periods,

v(s; pT+1
T (αT+1

T )) ≤ v̂T+1
T if and only if (10) holds.

PROOF: Similar to Lemma 3 (c) and is thus omitted.

By computation, we can rewrite Best Response Condition as

g + { 1

1− δ
− 1}v̂T+1

T ≤ 1

1− δ2
c + { 1

1− δ
− 1

1− δ2
}v̂T+1

T

⇐⇒ g − c ≤ δ2

1− δ2
(c− v̂T+1

T )

⇐⇒ v̂T+1
T = v(cT ; pT+1

T (αT+1
T )) ≤ vBR.
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Recall that by definition of τ(δ,G) (abbreviated as τ below),

v(cτ ; p
τ+1
τ (1)) = v(cτ+1; p

τ+1
τ (1)),

i.e., the best response condition is satisfied with equality at α = 1 when the

trust-building periods is exacatly τ(δ,G). Hence there is no bimorphic NSD with

the support {cτ , cτ+1}. Figure 3 shows that, given (δ,G), as T slightly decreases

below τ(δ,G), both v(cT ; pT+1
T (α)) and v(cT+1; p

T+1
T (α)) increases (uniformly for

all α ∈ [0, 1]) but they intersect at α < 1 and the value at the intersection is below

vBR. The latter holds when the slope of v(cT ; pT+1
T (1)) is smaller than the slope

of v(cT+1; p
T+1
T (1)), that is, when T < τ̂(δ,G), using the same logic as Lemma 7.

Hence there is a lower bound to δ to warrant τ̂(δ,G) ≥ τ(δ,G). (See Figure 5 in

Section 4.3.)
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T

FIGURE 3. – The existence of a bimorphic NSD as T is slightly below τ(δ,G).

(Parameter values: g = 100, c = 61, d = 21, ` = 20, δ = 0.921556, T = 1.05, τ(δ,G) =

1.1.)

For any (δ,G, T ), let

Φ = (1− δ2)(g − d)− δ2{1− δ2(T+1)}(c− d)− [(1− δ2)(d− `)

+{1− δ2(T+1)}(c− d)]{1− δ2(T+1)}2 > 0,

Ψ = [(1− δ2)(d− `) + {1− δ2(T+1)}(c− d)][{1− δ2(T+1)}2(c− d)− (1− δ2)(g − d)].
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PROPOSITION 4. For any (δ,G) such that τ̂(δ,G) ≥ τ(δ,G),

dv

dT

∣∣∣
T=τ(δ,G)

= 2δ2T (log δ)[
(c− d)Φ + Ψ

Φ
].

Hence, if (c − d)Φ + Ψ < 0, then (since log δ < 0) for T sufficiently close to

τ(δ,G) but less than that, there exists αT+1
T ∈ (0, 1) such that pT+1

T (αT+1
T ) is a

bimorphic NSD.

PROOF: See Appendix.

4.2. Staggered Distribution: Finite Support

We can extend the sufficient condition of the bimorphic NSDs for a general

multi-norm NSDs with the support {cT , cT+1, . . . , cT+K}. Let pT+K
T (α, β1, . . . , βK−1) =

αpT + (1− α)β1pT+1 + (1− α)(1− β1)β2pT+2 + · · ·+ (1− α)×K−1
k=1 (1− βk)pT+K

be the strategy distribution.

The Payoff Equalizing condition is derived backwards: Given the fractions of

(α, β1, . . . , βK−2), find β∗K−1 ∈ (0, 1) such that

βK−1 R β∗K−1 ⇐⇒ v(cT+K ; pT+K
T (βK−1)) R v(cT+K−1; p

T+K
T (βK−1)). (11)

Since cT+K−1 and cT+K behave the same way against any cT+k-strategy such

that k ≤ K−2, their payoff difference comes from only the matches with cT+K−1

and cT+K . Let V̄ :=
∑K−2

k=0 L(cT+k, cT+K−1)v
I(cT+K−1, cT+k) =

∑K−2
k=0 L(cT+k, cT+K)vI(cT+K , cT+k),

and γ := (1− α)×K−2
k=1 (1− βk). Then

v(cT+K−1; p
T+K
T (βK−1)) =

1

L(cT+K−1, p
T+K
T (βK−1))

[
V̄

+γβK−1v
I(cT+K−1, cT+K−1) + γ(1− βK−1)v

I(cT+K−1, cT+K)
]
;

v(cT+K ; pT+K
T (βK−1)) =

1

L(cT+K , pT+K
T (βK−1))

[
V̄

+γβK−1v
I(cT+K , cT+K−1) + γ(1− βK−1)v

I(cT+K , cT+K)
]
.

Therefore the payoff equalizing and stable β∗K−1 is one of the two solutions to

v(cT+K−1; p
T+K
T (βK−1)) = v(cT+K ; pT+K

T (βK−1))
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which is a quadratic equation of βK−1. Hence a similar analysis to the existence of

αT+1
T in 4.1 can be applied to the existence of β∗K−1. Note that β∗K−1 is a function

of (α, β1, . . . , βK−2).

Given β∗K−1(α, β1, . . . , βK−2), and (α, β1, . . . , βK−3), let β∗K−2 ∈ (0, 1) be such

that

βK−2 R β∗K−2 ⇐⇒ v(cT+K−1; p
T+K
T (βK−2)) R v(cT+K−2; p

T+K
T (βK−2)). (12)

And the process goes on until we reach αT+K
T ∈ (0, 1) such that

α R αT+K
T ⇐⇒ v(cT+1; p

T+K
T (α)) R v(cT ; pT+K

T (α)). (13)

Since there are exploiters for cT+1-strategy under pT+K
T , v(cT+1; p

T+K
T (α)) <

v(cT+1; p
T+1
T (α)). Therefore it is more difficult for the intersection αT+K

T to exist

than the bimorphic case. However, if αT+1
T and αT+K

T exist for some K > 1, then

all inbetween Payoff Equalizing solutions αT+k
T (k = 1, 2, . . . , K − 1) exist. See

Figure 4.

Once the Payoff Equalizing and Stable (αT+K
T , β∗1(α

T+K
T ), . . . , β∗K−1(α

T+K
T ))

exists we can write the Best Response Condition similar to the bimorphic case.

Best Response Condition: Let v̂T+K
T := v(cT ; pT+K

T (αT+K
T )) = v(cT+k; p

T+K
T (αT+K

T ))

for all k = 1, 2, . . . , K. For any t ≥ T + K + 1,

g + (L− 1)v̂T+K
T ≤ L(cT , cT , t)vI(cT , cT , t) + {L− L(cT , cT , t)}v̂T+K

T . (14)

Using the same logic as in 4.1, we can identify at least a local condition near

τ(δ,G) for the existence of K-morphic NSD.
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FIGURE 4. – Existence of Multi-Norm NSDs.

4.3. Staggered Distribution: Infinite Support

Finally we consider simple strategy distributions with the support {cT , cT+1, . . .}
(for some T ), i.e., infinitely many variety of trust-building periods. We first prove

that if a strategy distribution with the support {cT , cT+1, . . .} is to become a NSD,

then the population distribution of ct-strategies must be “geometric”.

LEMMA 9. Take any G and T < ∞. Let p be a stationary strategy distribution

with the support {cT , cT+1, . . .}. If v(cT ; p) = v(cT+τ ; p) for all τ = 1, 2, . . ., then

the fraction of cT+τ -strategy is α(1− α)τ for each τ = 0, 1, 2, . . ..

PROOF: See Appendix.

Denote the geometric distribution of {cT , cT+1, . . .} as p∞T (α). If p∞T (α) is the

stationary strategy distribution in the matching pool and if cT and cT+1 have the

same average payoff, then all other strategies in the support have also the same

payoff. The logic is easily understood by the following Table II(a)-(c) showing the

matching probability and the sequence of payoffs for cT , cT+1, and cT+2 within a

match against cT , cT+1, and so on.
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TABLE II

(a): Payoff sequence of cT -strategy under p∞T (α) within a match

prob. partner \ time 1 2 · · · T T + 1 T + 2 T + 3 T + 4
α cT d d · · · d c c c · · ·

(1− α) cT+1 and up d d · · · d `

(b): Payoff sequence of cT+1-strategy under p∞T (α) within a match

prob. partner \ time 1 2 · · · T T + 1 T + 2 T + 3 T + 4
α cT d d · · · d g

(1− α)α cT+1 d d · · · d d c c · · ·
(1− α)2 cT+2 and up d d · · · d d `

(c) : Payoff sequence of cT+2-strategy under p∞T (α) within a match

prob. partner \ time 1 2 · · · T T + 1 T + 2 T + 3 T + 4
α cT d d · · · d g

(1− α)α cT+1 d d · · · d d g
(1− α)2α cT+2 d d · · · d d d c · · ·
(1− α)3 cT+3 and up d d · · · d d d `

Notice that the bold-faced sub-table of Table II(b) is identical to the Table

II(a). This is because from the second period on, cT+1-strategy behaves the

same way as cT -strategy against itself and against longer trust-building strategies.

The conditional probabilities of meeting itself and longer trust-building strategies

are also the same. Similarly, from the second period on, cT+2-strategy behaves

the same way as cT+1-strategy against itself and against longer trust-building

strategies. Therefore, if cT and cT+1-strategy have the same average payoff, all

others have the same average payoff as well.

LEMMA 10. For any G and T < ∞,

v(cT ; p∞T (α)) = v(cT+1; p
∞
T (α)) ⇒ v(cT+τ ; p

∞
T (α)) = v(cT ; p∞T (α)) ∀τ = 1, 2, . . . ,

PROOF: (Can be omitted.) See Appendix.
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Consider the following class of G:

G = {G | ∃T ∈ {1, 2, . . .} such that 1 ≥ δG(T ) > δ̂G(T )}

To see if such G exists, note that for any G, δ̂G(T ) is increasing and δG(T )

is decreasing in T . For T = 0, δ̂G(0) =
√

1− c−d
g−`

< ∞ = δG(0), and δG(∞) =√
g−c
g−d

< 1 = δ̂G(∞). Therefore the graphs of δ̂G(T ) and δG(T ), when the time

scale is extended to real numbers, have an intersection. Then some adjustment

of the payoffs will give rise to G ∈ G. (See Figure 5.)

LEMMA 11. Take any G ∈ G. For any T ∈ {1, 2, . . .} such that δ̂G(T ) < δG(T ),

there exists δ∗G(T ) ∈ (δ̂G(T ), δG(T )) such that for any δ ∈ [δ∗G(T ), δG(T )), there

exists α∗(δ) that satisfies:

(a) v(cT ; p∞T (α∗)) = v(cT+1; p
∞
T (α∗)), and

(b) ∆v∞T (α, δ) is negatively sloping at α∗, where ∆v∞T (α, δ) := v(cT ; p∞T (α))−
v(cT+1; p

∞
T (α)).

PROOF: See Appendix.

Property (a), together with Lemma 10, implies that all strategies in the sup-

port of p∞T (α∗) have the same payoff. Property (b) implies that, near α∗, cT -

strategy does better than cT+1-strategy if and only if α < α∗. Hence cT or cT+1

cannot invade (increase the fraction in) p∞T (α∗). Moreover, if cT+τ (τ ≥ 2) in-

creases the fraction in p∞T (α∗), it is as if cT+1 increases (i.e., α decreases). Then

cT gets higher payoff, and cT+τ (τ ≥ 2) cannot invade in the sense of increasing

the fraction.

It remains to identify the sufficient conditions of δ and T such that no other

strategy earns higher payoff, i.e., an incentive constraint. By a similar logic to

the monomorphic NSD, it suffices to consider strategies that differ on the play

path after cooperation periods have started. For each τ = 0, 1, 2, . . ., let sτ be

the strategy that imitates cT+τ -strategy for the first T + τ + 1 periods (that is,

to build trust for T + τ periods and then play C once, so that it is clear that
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the partner is cT+τ -strategy if the partnership continues) and then plays D in

T + τ + 2. A sufficient condition for such strategy to be unable to invade p∞T (α∗)

is

v(cT+τ ; p
∞
T (α∗)) > v(sτ ; p

∞
T (α∗)). (15)

Note that, among on-path deviations during the cooperation periods, sτ strategy

earns the highest payoff, due to the discounting.

LEMMA 12. For any (G, T ), there exists δ∗∗G (T ) < δG(T ) such that for any δ ∈
(δ∗∗G (T ), δG(T )),

v(cT+τ ; p
∞
T (α∗(δ))) > v(sτ ; p

∞
T (α∗(δ)))

for any τ = 0, 1, 2, . . ..

PROOF. See Appendix.

PROPOSITION 5. Take any G ∈ G. For any T such that δ̂G(T ) < δG(T ) and

for any δ ∈ (max{δ∗G(T ), δ∗∗G (T )}, δG(T )), there is a neutrally stable polymorphic

strategy distribution of the form p∞T (α∗(δ)) for some α∗(δ) ∈ (0, 1).

PROOF: (Can be omitted.) From lemma 11 and lemma 12, it suffices to prove

that other strategies that differ on the play path from {cT , cT+1, . . .} during the

trust-building periods or that end a partnership with the same strategy do not

earn higher payoff, which is shown in Appendix. Q.E.D.

Therefore, cooperation and exploitation can co-exist. Figure 5 below summa-

rizes the relationship between the survival rate δ and the sufficient trust-building

periods of symmetric single-norm NSDs and multi-norm NSDs.
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δ

T

√
g−c
c−d

1

√
g−c
g−d

τ(δ,G)

τ̂(δ,G)

Area where
multi-norm
NSD exists

Area where
monomorphic NSS exist

1 2 3 4 5

FIGURE 5. – Parametric summary of NSDs.

4.4. Efficiency

Finally, let us compare the efficiency between single-norm NSDs and multi-

norm NSDs.

As we have seen, the shortest trust-building period among monomorphic NSS

is longer than the shortest trust-building period of multi-norm NSDs. (See Figure

5 above.)

Recall that the average payoff of each strategy in the support of a polymorphic

NSD is (for any K finite or infinity)

v(cT ; pT+K
T (αT+K

T (δ))) = αT+K
T (δ)

L(cT , cT )

L(cT ; pT+K
T (αT+K

T (δ)))
vI(cT , cT )

+(1− αT+K
T (δ))

L(cT , cT+1)

L(cT ; pT+K
T (αT+K

T (δ)))
vI(cT , cT+1)

= v(cT+k; p
T+K
T (α∗(δ))) ∀k = 1, 2, . . . ,∞

For δ sufficiently close to but less than δG(T ), αT+K
T (δ) ≈ 1 and thus
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v(cT ; pT+K
T (αT+K

T (δ))) ≈ v(cT ; pT ) > v(cT+1; pT+1) where the latter is the shortest

monomorphic NSS’s average payoff.

Therefore, it is possible that a multi-norm NSD is more efficient than any

single-norm monomorphic NSS. This is due to the randomly matched partner’s

exploitation as a disciplining device. If you are lucky to start the cooperation

periods with the current partner, it is not beneficial to betray and go back to

the random matching pool, in which there are diverse players with longer trust-

building periods.

It is quite interesting that diversity can mean early cooperation as well as

higher average payoff than single-norm NSDs.

5. CONCLUDING REMARKS

5.1. Efficiency Wage and Three Types of Sanctions

Our model describes a society where players meet with a stranger to play a

voluntarily repeated prisoner’s dilemma. We analyzed how continuous coopera-

tion becomes an equilibrium behavior when deviation from cooperation induces

appropriate social sanctions.

Sanctions consist of two parts; First, a player’s non-cooperation invokes part-

ner’s severence decision, forcing him to start new partnership with a stranger.

Second, payoff level he expects with this stranger is less than what he expects in

continued partnership with the current partner. We call this payoff difference as

trust capital with the ongoing partner.

In the main text, we have identified two different ways by which trust is

generated;

(a) With new partner, player must spend a certain lengths of trust-building

(TB) periods, playing one-shot NE. This is the case when cT -strategy con-

stitutes a monomorphic NSD with T ≥ 1.
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(b) With a positive probability, new partner will play a different length of TB

periods. Partnership with such stranger is a mismatch, forcing the part-

nership to break up prematurely. This is the case when, e.g., c0- and c1-

strategies coexist in a staggered polymorphic NSD.

There is an additional mechanism which creates trust if we allow matching

probability to be less than one.

(c) Even if trust is established with new partner immediately, with a positive

probability player fails to find a partner in the matching pool (i.e., player

is unemployed).

This is the logic which provides a work incentive in the effciency wage theory as

the possibility of unemployment works as a disciplinary device (see, e.g., Shapiro

and Stiglitz, 1984). For completeness of the paper we briefly discuss how our

model can be extended to derive c0-strategy as a monomorphic NSD when there

is a positive unemployment probability.

Suppose, in the matching pool, only with probability 1 − u ∈ (0, 1) one can

find a new partner and with probability u ∈ (0, 1) she spends the next period

without a partner and receives payoff of 0 (which may be larger or smaller than

d). With this possibility of “unemployment”, average payoff that cT strategy

player expects to receive in the matching pool (but before he finds a partner) is:

v0(cT ; pT ) = (1− u)v(cT ; pT ),

where v(cT ; pT ) is now interepreted as “the average payoff that cT expects to

receive when the new partnership is formed” (i.e., at the beginning of period 1 of

the partnership).

By the same logic as in Section 3, the incentive constraint for cT -strategy to

be followed during the cooperation periods is

g − vI(cT , cT , t) ≤ {L(cT , cT , t)− 1}{vI(cT , cT , t)− v0(cT ; pT )}
⇐⇒ g − c ≤ δ2

1− δ2
{c− v0(cT ; pT )}.
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Clearly, if (5) is satisfied, the above constraint is also satisfied. Moreover, the

BR constraint can be satisfied even for c0 for sufficiently large u, and cooperation

without trust building period becomes a self-sustaining state.

As noted in Shapiro and Stiglitz (1984) and Okuno-Fujiwara(1989), unem-

ployment works as a disciplinary device that deters moral hazard behavior.

This observation suggests that the property of matching machanism is an

important element in creating trust. In our current setup, there are four reasons

to be in the matching pool: new birth, death of the partner, separation due to

the partner’s deviation, and separation due to own deviation. In this paper we

analyzed the case where no distinction can be made among these due to the lack

of information. We plan to extend our research to investigate mechanisms with

which players can distinguish (at least some) reasons why newly matched partner

came into the matching pool.

5.2. Cheap Talk

Recall that, under favorable environments, c1-strategy can invade the popu-

lation of d̃-strategy as an equilibrium entrant. c1-strategy proposes to keep the

partnership even after (D,D), and this proposal acts as a “signal” or “cheap talk”

that it is not d̃-strategy and intends to cooperate. This reminds us of papers like

Robson (1990) and Matsui (1991) who showed that cheap talk can be used as a

signal to play the Pareto efficient Nash equilibrium in coordination games. Be-

cause there are multiple NSD with different payoff outcomes in our model, cheap

talk may work as a coordination device to achieve efficient equilibrium in evo-

lutionary setting. We shall provide a rough sketch of what would happen if we

allow cheap talk with neoloigism at the beginning of each matching.

Assume that when two players are newly matched, they simultaneously choose

and send a message m ∈ M from a countable set M to her partner. M is common

to all players. The messages do not alter the payoff and thus are cheap-talk. The

message choice is private information, shared between the partners but not known

by any other palyers.
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DEFINITION. A pure strategy sCT of VRPD with cheap talk consists of (m,σ)

such that:

1. m ∈ M specifies the message player sends to the partner,

2. σ : M → S specifies the VRPD strategy σ(m′) she chooses to play for each

message m′ ∈ M she receives from the partner.

In the following, however, in order to ease the notation we shall denote pure

strategy by σ, omitting the message m she sends to her partner. We chose such

convention because we focus on the following two types of strategies; babbling

strategy where message choice has no meaninful contents and neologism strategy

where the message is “neologism”.

In what follows, SCT is the set of all pure strategies of VRPD with cheap talk,

which is the extension of S defined for the original VRPE without cheap talk.

1. “Babbling” strategy: s ∈ S is extended as a degenerate strategy σB ∈ SCT

which uses a constant-vaued function σB(m) = s for all m ∈ M . This strategy

makes initial message exchange meaningless because s ∈ S is played regardless

of the message received from the partner.

2. “Neologism” strategy: Different VRPD strategies s, s′ ∈ S are played

depending upon the message receieved from the partner. E.g., suppose the current

population consists of a babbling strategy σB ∈ SCT where σB(m) = s ∈ S for

any m ∈ M . Against this monomorphic strategy distribution, consider an entrant

population who uses a strategy σN ∈ SCT such that

(a) it announces a neologism message, i.e., a message which is not used by the

current population, and

(b) σN(m) = s when m is not the neologism, while

(c) σN(m′) = s′ 6= s when m′ is the neologism.
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With this neologism strategy, σN , entrants play exactly the same way as

incumbents (i.e., play s) when they are matched with incumbents, while they

play differently (i.e., play according to s′) against fellow entrants. They can

identify incumbents who announce non-neologism messages from fellow entrants

who announce neologism message at the initial message exchange.

For each pure strategy s ∈ S, we write corresponding babbling strategy of

the cheap talk model (actually, “set of strategies” because message choice is

arbitrary) as σB(s) ∈ P(SCT ). Similarly, we can extend a strategy distribution

p ∈ P(S) of the ordinary VRPD to an associated babbling strategy distribution

of the cheap talk game. For the ease notations, we shall write this distribution

as σB(p) ∈ P(SCT ), with the superscript B.

Given an incumbent babbling strategy distribution, σB(p′) ∈ P(S), consider

a neologism strategy which plays s ∈ S if and only if both partners use the

neologism message. Again in order to ease notation, we shall denote such strategy

(i.e., strategy which tries to enter p′ using the neologism-contingent play of s) as

σN(s; p′).

As is well-known, babbling extension of a Nash equilibrium of the original

model is always a Nash equilibrium of the cheap-talk model because message

exchange does not alter players’ incentives if all players use babbling strategy.

LEMMA 13. For any Nash Equilibrium p ∈ P(S) of VRPD, the associated babbling

strategy distribution σB(p) ∈ P(SCT ) is a Nash Equilibrium of the cheap talk

model.

PROOF: Obvious.

On the other hand, some NSDs of non-cheap talk model are invaded by a ne-

ologism strategy as an equilibrium entrant in the cheap talk model. However, in

the cheap-talk model, it is possible to signal to start the cooperation periods ear-

lier and earlier to eventually violate the Best Response condition. Hence we need

to require that entrants must be a best response to the post-entry distribution,

to avoid the non-existence.
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DEFINITION. A (stationary) strategy distribution p ∈ P(S) in the matching pool

is a Neutrally Stable Distribution under Equilibrium Entrants (NSDEE) if, for any

s′ ∈ S, there exists ε̄ ∈ (0, 1) such that, for any ε ∈ (0, ε̄), s′ is a best response to

(1− ε)p + εps′ and s′ cannot invade p.

In Section 4, we showed that, given G, either the single-norm NSD with

the minimum trust-building periods or one of the multi-norm NSD is the most

effcient (i.e., whose expected payoff provides the largest value) NSD of VRPD.

Let p∗ ∈ P(S) of VRPD be this most efficient (whose expected payoff is the

highest) NSD of VRPD. Let σB(p∗) ∈ P(SCT ) be the associated babbling strategy

distribution.

Clearly, no NSD provides higher average payoff than the most efficient NSD,

and with cheap talk no strategy can invade the most efficient NSD as an equlib-

rium entrant. Thus, we have the following result.

PROPOSITION 6. σB(p∗) ∈ P(SCT ) is a NSDEE with cheap talk.

PROOF: Obvious.

5.3. Drift and Limit of Solution Concept

In this paper, we have used Nash Equilibrium (NE), Neutrally Stable Distri-

bution (NSD), and Neutrally Stable Distribution against Equilibrium Entrants

(NSDEE) as our solution concept. Because component game of our (random

matching) model is VRPD which is an extensive form game, however, any strat-

egy distribution leaves many unreaced nodes. Hence, the concept of NSD is not

sufficiently restrictive to identify reasonably restricted set of strategy distribu-

tions.

Limitation of the cocept, NSD, is especially evident in view of the possibility of

drift. As an example, consider the following thought experiment with or without

cheap talk. Suppose G and δ are chosen so that p1 is the most efficient NSD. Being
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a NSDEE, once entier society starts to use cT (or σB(cT )ifcheaptalkisallowed),

no strategy can invade as an equilibrium entrant.

However, there are numerous strategies which produce exactly the same out-

come (and hence the same average payoff) but differ in the behavior at unreached

nodes. For example, consider the following strategy c̃1 ∈ S:

t = 1 : play D and choose k regardless of the outcome,

t ≥ 2 : play C and choose k regardless of the outcome.

This strategy produces exactly the same outcome as p1 as long as the society

consists only of c1 and c̃1. Thus, strarting from p1, strategy distribution may drift

to any distribution βp1 + (1− β)p̃1 with β ∈ [0, 1], where p̃1 is the monomorphic

distribution consisting only of c̃1.

However, c̃1 being an extremely permissive strategy, strategies such as c∞ can

take advantage and materialize payoff stream of (d, g, g, . . . ) during the match

with c̃1. Note that c∞ can receive average payoff of only d in the strategy dis-

tribution p1 and its payoff is strictly lower than c1. However if drifts make β

sufficiently large, c∞ starts to drive out c1. Eventually, strategy distribution may

become p∞, the monomorphic distribution consisting only of c∞.

Such a story suggests that we might consider set-theoretic solution concepts,

such as Equilibrium Evolutionary Stable Set of Swinkles (1992) or Socially Stable

Strategies of Matsui (1992). In fact, drifts may lead from p1 to p̃1, from p̃1 to

p∞, from p∞ to pd̃, and from pd̃ back to p1. However, there are many other

closed paths which are connected by drifts (through equilibrium entrants). The

cardinality of set of stragies being so large, we shall not try to identify these sets

in this paper.
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5.4. Related Literature and Future Research Agenda

Several papers have previously analyzed the voluntarily repeated prisoner’s

dilemma, though not as fully as this paper does. These literature has pointed out

two factors that facilitate cooperation under the VRPD type games.

First, they identify our monomorphic trust-buidling NSD, i.e., “gradual co-

operation” or “starting small” is the mechanism for sanction against defection

because it makes the initial value of a new partnership small. Papers differ in the

treatment of information.

Datta (1996) and Kranton (1996a) consider a complete information, two-

player, voluntarily repeated game similar to ours. The stage game is a continuum-

action prisoner’s dilemma, representing borrower-lender or gift exchange situa-

tions. Therefore the players in their model can gradually increase the “level

of cooperation”, which makes the same disciplining system as our cT -strategy.

Based upon non-evolutionary model-setting, Kranton (1996a) emphasizes that if

partners “renegotiate”, they would want to start cooperation immediately, which

leads to non-existence of equilibrium. She then shifts to incomplete information

by introducing “defective” type whose discount factor is zero so that initial low

level of cooperation is rational to sort out these types.

Ghosh and Ray (1996) also consider a similar incomplete information model

to Kranton’s. In a related work, Watson (2002) shows that partners would choose

to gradually increase the stakes of the relationship.

Carmichael and MacLeod (1997) formulate a complete information (i.e., all

players have identical discount factor) evolutionary model with initial gift ex-

change stage added to the voluntarily repeated prisoner’s dilemma. Mutual gift

exchange, which incurs a positive cost to givers but provides no value to receivers,

works the same way as the “level of cooperation” adjustment.

Our paper has more primitive structure than the papers cited above; game is

complete information, stage game is an ordinary PD game with two actions, and

there is no gift exchange stage prior to the normal partnership. In exchange, we
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develop various new concepts and a much richer set of analytical tools that enable

us to investigate VRPD more fully. Further more, we focus around evolution

of behaviors within a society as a whole, rather than restricting attention to

behaviors within a single partneship given (uniform) strategy distribution in a

society. As its byproducts, we are able to provide fuller characterizations of

monomorphic trust-building strategy NSD, such as indentifying the condition (in

terms of death rate and payoff values of stage game) for the existence of NSD

with a particular length of trust-building periods, etc.

Second, “heterogeneity” may help cooperation. With incomplete informa-

tion model Rob and Yang (2005), independently written from ours, shows that

repeated cooperation from the outset of a partnership can be an equilibrium

among heterogeneous players. In their model, there are three types of players;

bad type who always plays D, good type who always plays C, and rationanl type

who tries to maximize their payoff.

The logic is as follows. Existence of bad type players makes it valuable to (1)

keep and cooperate with either good or rational type partners, and (2) to find out

bad type partners as soon as possible. Thus, a rational player should cooperate

from the beginning to be distinguished from the bad-type.

Our result is much starker than Rob and Yang. Our model does not rely

on heterogeous “type” and incomplete information. Instead, bad (longer trust-

buidling) strategy emerges endogenously as a polymorphic NSD. We also elucidate

that there may be an equliibrium strategy distribution (NSD) with more than

two (possible infinite) heterogenous strategies.
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APPENDIX: PROOFS

PROOF OF LEMMA 3:

(a) Let s′ be a strategy that chooses e in some t after on-path history. If t < T + 1,
the average payoff of s′ under pT is d and is strictly less than v(cT ; pT ) = (1 −
δ2T )d + δ2T c. If t ≥ T + 1, the average value is

L(s′, cT ) =
1− δ2t

1− δ2
,

V I(s′, cT ) = (1 + δ2 + · · ·+ δ2(T−1))d + (δ2T + · · ·+ δ2(t−1))c,

v(s′; pT ) = vI(s′, cT ) =
1− δ2

1− δ2t

[1− δ2T

1− δ2
d +

δ2T (1− δ2(t−T ))
1− δ2

c
]
.

By computation,

{v(cT ; pT )− v(s′; pT )}(1− δ2t)
= (1− δ2t)(1− δ2T )d− (1− δ2T )d + (1− δ2t)δ2T c− δ2T (1− δ2(t−T ))c
= (1− δ2T )δ2t(c− d) > 0.

(b) If one chooses C in t < T + 1 along on-path history, then the average payoff is
less than d since the partnership ends there and hence is less than v(cT ; pT ) =
(1− δ2T )d + δ2T c.

(c) Although the text contains a proof with one-step deviation argument, we pro-
vide an alternative proof using the average payoff itself to confirm that one-step
deviation method is necessary and sufficient. Let s be any strategy that chooses
D at some t ≥ T + 1 along on-path history.

L(s, cT ) =
1− δ2t

1− δ2
,

V I(s, cT ) = (1 + δ2 + · · ·+ δ2(T−1))d + (δ2T + · · ·+ δ2(t−2))c + δ2(t−1)g,

v(s; pT ) =
1− δ2

1− δ2t

[1− δ2T

1− δ2
d +

δ2T (1− δ2(t−T−1))
1− δ2

c + δ2(t−1)g
]
.

By computation,

{v(cT ; pT )− v(s; pT )}(1− δ2t)
= (1− δ2t)(1− δ2T )d + (1− δ2t)δ2T c

−(1− δ2T )d− (δ2T − δ2(t−1))c− (1− δ2)δ2(t−1)g,

= −δ2t(1− δ2T )d + δ2(t−1)(1− δ2T+2)c− (1− δ2)δ2(t−1)g,

= δ2(t−1)
[
−δ2(1− δ2T )d + (1− δ2 + δ2 − δ2T+2)c− (1− δ2)g

]
,

= δ2(t−1)
[
δ2(1− δ2T )(c− d)− (1− δ2)(g − c)

]
.

Therefore

v(cT ; pT )− v(s; pT ) ≥ 0 ⇐⇒ δ2 1− δ2T

1− δ2
(c− d) ≥ g − c.
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Q.E.D.

PROOF OF LEMMA 4: Let q := (1− ε)p + εps′ . From (1), for any s ∈ supp(p),

v(s′; q) = (1− ε)
L(s′; p)
L(s′; q)

v(s′; p) + ε
L(s′, s′)
L(s′; q)

vI(s′, s′),

v(s; q) = (1− ε)
L(s; p)
L(s; q)

v(s; p) + ε
L(s, s′)
L(s; q)

vI(s, s′).

If s′ invades p, then for any s ∈ supp(p),

(1− ε)
L(s′; p)
L(s′; q)

v(s′; p) + ε
L(s′, s′)
L(s′; q)

vI(s′, s′) ≥ (1− ε)
L(s; p)
L(s; q)

v(s; p) + ε
L(s, s′)
L(s; q)

vI(s, s′),

and for some s ∈ supp(p),

(1− ε)
L(s′; p)
L(s′; q)

v(s′; p) + ε
L(s′, s′)
L(s′; q)

vI(s′, s′) > (1− ε)
L(s; p)
L(s; q)

v(s; p) + ε
L(s, s′)
L(s; q)

vI(s, s′),

for sufficiently small ε > 0. By letting ε → 0, we obtain

v(s′; p) ≥ v(s; p),

for any s ∈ supp(p). Since p is a Nash equilibrium, we have that s′ ∈ BR(p). Q.E.D.

PROOF OF LEMMA 5:

v(cT ; pT+1
T (α))

=
αV I(cT , cT ) + (1− α)V I(cT , cT+1)
αL(cT , cT ) + (1− α)L(cT , cT+1)

=
αL(cT , cT )vI(cT , cT )

αL(cT , cT ) + (1− α)L(cT , cT+1)
+

(1− α)L(cT , cT+1)vI(cT , cT+1)
αL(cT , cT ) + (1− α)L(cT , cT+1)

=
αL(cT , cT )

αL(cT , cT ) + (1− α)L(cT , cT+1)
vI(cT , cT )

+
[
1− αL(cT , cT )

αL(cT , cT ) + (1− α)L(cT , cT+1)

]
vI(cT , cT+1)

= vI(cT , cT+1) +
αL(cT , cT )

L(cT , cT+1) + α{L(cT , cT )− L(cT , cT+1)}{v
I(cT , cT )− vI(cT , cT+1)}.

Let
µ(cT , pT+1

T (α)) :=
αL(cT , cT )

L(cT , cT+1) + α{L(cT , cT )− L(cT , cT+1)} .

This is the only part that α is involved in v(cT ; pT+1
T (α)). We can simplfy as

v(cT ; pT+1
T (α)) = vI(cT , cT+1) + µ(cT , pT+1

T (α)){vI(cT , cT )− vI(cT , cT+1)}. (16)

By differentiation,

∂µ(cT , pT+1
T (α))

∂α
=

L(cT , cT )L(cT , cT+1)
[L(cT , cT+1) + α{L(cT , cT )− L(cT , cT+1)}]2 > 0,
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and, since L(cT , cT )− L(cT , cT+1) = 1
1−δ2 − 1−δ2(T+1)

1−δ2 > 0, the derivative is decreasing
in α. Note also that

vI(cT , cT )− vI(cT , cT+1)

= (1− δ2T )d + δ2T c− (1− δ2T )d + δ2T (1− δ2)`
1− δ2(T+1)

=
(1− δ2T ){1− δ2(T+1) − 1}d + δ2T {(1− δ2(T+1))c− (1− δ2)`}

1− δ2(T+1)

=
δ2T {(1− δ2)(c− `) + δ2(1− δ2T )(c− d)}

1− δ2(T+1)
> 0.

Hence v(cT , pT+1
T (α)) is strictly increasing and concave in α. Q.E.D

PROOF OF LEMMA 6:

v(cT+1; pT+1
T (α))

=
αV I(cT+1, cT ) + (1− α)V I(cT+1, cT+1)
αL(cT+1, cT ) + (1− α)L(cT+1, cT+1)

= vI(cT+1, cT+1)

+
αL(cT+1, cT )

L(cT+1, cT+1) + α{L(cT+1, cT )− L(cT+1, cT+1)}{v
I(cT+1, cT )− vI(cT+1, cT+1)}.

Let
µ(cT+1, p

T+1
T (α)) :=

αL(cT+1, cT )
L(cT+1, cT+1) + α{L(cT+1, cT )− L(cT+1, cT+1)} .

Then

v(cT+1; pT+1
T (α)) = vI(cT+1, cT+1) + µ(cT+1, p

T+1
T (α)){vI(cT+1, cT )− vI(cT+1, cT+1)}.

(17)
Note that

vI(cT+1, cT )− vI(cT+1, cT+1)
= {vI(cT+1, cT )− vI(cT , cT )}+ {vI(cT , cT )− vI(cT+1, cT+1)} > 0,

since cT+1 can invade pT (thus the first bracket is postive) and cT starts cooperation
earlier than cT+1 (thus the second bracket is positive).

By differentiation,

∂µ(cT+1, p
T+1
T (α))

∂α
=

L(cT+1, cT )L(cT+1, cT+1)
[L(cT+1, cT+1) + α{L(cT+1, cT )− L(cT+1, cT+1)}]2 > 0.

However, notice that L(cT+1, cT ) − L(cT+1, cT+1) = 1−δ2(T+1)

1−δ2 − 1
1−δ2 < 0 so that the

derivative is increasing in α. Therefore v(cT+1; pT+1
T (α)) is strictly increasing but con-

vex in α. Q.E.D

PROOF OF LEMMA 7: Let µT (α) = αL(cT ,cT )

L(cT ;pT+1
T (α))

and µT+1(α) = αL(cT+1,cT )

L(cT+1;pT+1
T (α))

. Then

(??) and (??) become

v(cT ; pT+1
T (α)) = µT (α)vI(cT , cT ) + {1− µT (α)}vI(cT , cT+1),

v(cT+1; pT+1
T (α)) = µT+1(α)vI(cT+1, cT ) + {1− µT+1(α)}vI(cT+1, cT+1).
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By differentiation,

∂v(cT ; pT+1
T (α))

∂α
= µ′T (α){vI(cT , cT )− vI(cT , cT+1)},

∂v(cT+1; pT+1
T (α))

∂α
= µ′T+1(α){vI(cT+1, cT )− vI(cT+1, cT+1)}.

By computation,

µ′T (α) =
L(cT , cT )L(cT , cT+1)

[αL(cT , cT ) + (1− α)L(cT , cT+1))]2

→ L(cT , cT+1))
L(cT , cT )

= 1− δ2(T+1) as α → 1,

µ′T+1(α) =
L(cT+1, cT )L(cT , cT+1)

[αL(cT+1, cT ) + (1− α)L(cT+1, cT+1))]2

→ L(cT+1, cT+1)
L(cT+1, cT )

=
L(cT , cT )

L(cT , cT+1)
=

1
1− δ2(T+1)

, as α → 1.

At δ = δG(T ),

v(cT ; pT+1
T (1)) = vI(cT , cT ) = v(cT+1; pT+1

T (1)) = vI(cT+1, cT ).

Therefore, at δ = δG(T ),

∂∆ṽT

∂α
(1, δG(T )) =

L(cT , cT+1))
L(cT , cT )

{vI(cT , cT )− vI(cT , cT+1)}

− L(cT , cT )
L(cT , cT+1)

{vI(cT+1, cT )− vI(cT+1, cT+1)},

= (1− δ2(T+1))
δ2T (1− δ2)(g − `)

1− δ2(T+1)
− 1

1− δ2(T+1)
δ2T (1− δ2)(c− d)

= δ2T (1− δ2)
{

(g − `)− c− d

1− δ2(T+1)

}
.

Q.E.D.

PROOF OF PROPOSITION 4: For the ease of computations, we introduce following
notations.

(a) τ(δ,G) = T0

(b) f(T ) = v(cT , cT )

(c) h(T ) = v(cT , cT+1)

(d) g(T ) = v(cT+1, cT )

(e) k(T ) = v(cT+1, cT+1)

(f) j(T ) = v(cT+1, cT+2)
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(g) F (T, α) = v(cT ; pT+1
T (α))

= m(T, α)v(cT , cT ) + [1−m(T, α)]v(cT , cT+1)
= v(cT ; p∞T (α))

(h) G(T, α) = v(cT+1; pT+1
T (α))

= n(T, α)v(cT+1, cT ) + [1− n(T, α)]v(cT+1, cT+1)

(i) H(T, α) = v(cT+1; p∞T (α))
= x(T, α)v(cT+1, cT )+y(T, α)v(cT+1, cT+1)+[1−x(T, α)−y(cT+1, cT+2)]v(cT+1, cT+2)

(j) m(T, α) = αL(cT ,cT )
αL(cT ,cT )+(1−α)L(cT ,cT+1) = αp(T )

αp(T )+(1−α)q(T )

(k) n(T, α) = αL(cT+1,cT )
αL(cT+1,cT )+(1−α)L(cT+1,cT+1) = αq(T ))

αq(T )+(1−α)p(T )

(l) x(T, α) = αL(cT+1,cT )
αL(cT+1,cT )+α(1−α)L(CT+1,cT+1)+(1−α2)L(cT+1,cT+2)

= αq(T )
αq(T )+α(1−α)p(T )+(1−α2)r(T )

(m) y(T, α) = α(1−α)L(cT+1,cT+1)
αL(cT+1,cT )+α(1−α)L(CT+1,cT+1)+(1−α2)L(cT+1,cT+2)

= α(1−α)p(T )
αq(T )+α(1−α)p(T )+(1−α2)r(T )

(n) p(T ) = L(cT , cT ) = L(cT+1, cT+1)

(o) q(T ) = L(cT , cT+1) = L(cT+1, cT ) = L(cT , cT+2)

(p) r(T ) = L(cT+1, cT+2)

(q) vIC = c− 1−δ2

δ2 (g − c)

By definition,
F (T0, 1) = f(T0) = G(T0, 1) = g(T0) := v0.

Moreover, note that vIC is independent of T and:

∂vIC

∂T
= 0. (18)

We now analyze the effect of a small change (decrease) of T , which is denoted as a
change from T0 to T = T0 + dT . If we denote payoff equalizing strategy proportion
by αT+1

T (T ), and the associated equalized payoff by v(T ), the following identity must
hold:

F (T, αT+1
T (T )) = G(T, αT+1

T (T )) = v(T ).

Differentiating this identity:

∂F

∂T
+

∂F

∂α

dαT+1
T (T )
dT

=
∂G

∂T
+

∂G

∂α

dαT+1
T (T )
dT

=
dv

dT
. (19)

Rearranging,
dαT+1

T (T )
dT

=
∂F
∂T − ∂G

∂T
∂G
∂α − ∂F

∂α

. (20)
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Note, by assumption,

∂F

∂T

∣∣
(T,α)=(T0,1)

− ∂G

∂T

∣∣
(T,α)=(T0,1)

> 0

because T < τ(δ,G) and as T becomes small, g(T ) − f(T ) increases. On the other
hand,

∂G

∂α

∣∣
(T,α)=(T0,1)

>
∂F

∂α

∣∣
(T,α)=(T0,1)

because T < τ̂(δ,G). It follows that, in the neighbourhood of (T, α) = (T0, 1),

dαT+1
T (T )
dT

> 0.

In view of (18), if:

dv =
{

∂F (T, αT+1
T (T ))

∂T
+

∂F (T, αT+1
T (T ))

∂α

dαT+1
T (T )
dT

}∣∣∣∣
T=T0

× dT < 0 when dT < 0,

(21)
or if the sign of (19) is positive, then bimorphic distribution pT+1

T (α(T )) is
NE for T which is sufficiently close to T0.

Note that ∂F
∂α > 0 but ∂F

∂T < 0 and the sign of (19) is a priori ambiguous.

Differentiation of F (T, α)

Because:
F (T, α) = m(T, α)f(T ) + [1−m(T, α)]h(T ),

∂F

∂T
=

∂m

∂T
[f(T )− h(T )] + m(T, α)f ′(T ) + [1−m(T, α)]h′(T ), and (22)

∂F

∂α
=

∂m

∂α
[f(T )− h(T )]. (23)

Note:

∂m(T, α)
∂T

=
αp′(T )[αp(T ) + (1− α)q(T )]− αp(T )[αp′(T ) + (1− α)q′(T )]

[αp(T ) + (1− α)q(T )]2

=
α(1− α)[p′(T )r(T ) + q′(T )p(T )]

[αp(T ) + (1− α)q(T )]2
→ 0 as α → 1, (24)

∂m(T, α)
∂α

=
p(T )[αp(T ) + (1− α)q(T )]− [p(T )− q(T )]αp(T )

[αp(T ) + (1− α)q(T )]2

=
p(T )q(T )

[αp(T ) + (1− α)q(T )]2
→ q(T )

p(T )
as α → 1, (25)

m(T, α) =
αp(T )

αp(T ) + (1− α)q(T )
→ 1 as α → 1. (26)

Differentiation of G(T, α)

Because:
G(T, α) = n(T, α)g(T ) + [1− n(T, α)]k(T ),
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∂G

∂T
=

∂n(T, α)
∂T

[g(T )− k(T )] + n(T, α)g′(T ) + [1− n(T, α)]k′(T ), (27)

∂G

∂α
=

∂n(T, α)
∂α

[g(T )− k(T )]. (28)

Note:

∂n(T, α)
∂T

=
αq′(T )[αq(T ) + (1− α)p(T )]− [αq′(T ) + (1− α)p′(T )]αq(T )

[αq(T ) + (1− α)p(T )]2

=
α(1− α)[q′(T )p(T )− q(T )p′(T )]

[αq(T ) + (1− α)p(T )]2
→ 0 as α → 1, (29)

∂n(T, α)
∂α

=
q(T )[αq(T ) + (1− α)p(T )]− αq(T )[q(T )− p(T )]

[αq(T ) + (1− α)p(T )]2

=
q(T )p(T )

[αq(T ) + (1− α)p(T )]2
→ p(T )

q(T )
as α → 1, (30)

n(T, α) =
ααq(T )

αq(T ) + (1− α)p(T )
→ 1 as α → 1. (31)

Computation of α′(T0)

In view of (24), (25), (26), (29), (30) and (31):

∂F

∂T

∣∣
α=1

= f ′(T ), (32)

∂F

∂α

∣∣
α=1

=
q(T )
p(T )

[f(T )− h(T )], (33)

∂G

∂T

∣∣
α=1

= g′(T ), (34)

∂G

∂α

∣∣
α=1

=
p(T )
q(T )

[g(T )− k(T )]. (35)

Because dδT

dT = δT (log δ), straightforward computations yield:

f(T ) = v(cT , cT ) = (1− δ2T )d + δ2T c,

f ′(T ) = 2δ2T (log δ)(c− d),

h(T ) = v(cT , cT+1) =
(1− δ2T )d + δ2T (1− δ2)`

1− δ2(T+1)
,

f(T )− h(T ) = (1− δ2T )d + δ2T c− (1− δ2T )d + δ2T (1− δ2)`
1− δ2(T+1)

=
(1− δ2T )[1− δ2(T+1) − 1]d + δ2T [(1− δ2(T+1))c− (1− δ2)`]

1− δ2(T+1)

=
δ2T

1− δ2(T+1)
[(1− δ2)(c− `) + δ2(1− δ2T )(c− d)],

p(T ) = L(cT , cT ) =
1

1− δ2
,

q(T ) = L(cT , cT+1) =
1− δ2(T+1)

1− δ2
.
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Substituting these values into (32) and (33):

∂F

∂T

∣∣
α=1

= f ′(T ) = 2δ2T (log δ)(c− d), (36)

∂F

∂α

∣∣
α=1

=
q(T )
p(T )

[f(T )− h(T )]

= [1− δ2(T+1)]
δ2T [(1− δ2)(c− `) + δ2(1− δ2T )(c− d)]

1− δ2(T+1)

= δ2T [(1− δ2)(c− `) + δ2(1− δ2T )(c− d)]
= δ2T [(1− δ2)(d− `) + (1− δ2(T+1))(c− d)]. (37)

Similarly:

g(T ) = v(cT+1, cT ) =
(1− δ2T )d + δ2T (1− δ2)g

1− δ2(T+1)

g′(T ) =
[−2δ2T d + 2δ2T (1− δ2)g](log δ)[1− δ2(T+1)] + 2δ2(T+1)(log δ)[(1− δ2T )d + δ2T (1− δ2)g]

[1− δ2(T+1)]2

=
2δ2T (log δ)

[1− δ2(T+1)]2
[(1− δ2)(1− δ2(T+1))g − (1− δ2(T+1))d + δ2(1− δ2T )d + δ2(T+1)(1− δ2)g]

=
2δ2T (log δ)

[1− δ2(T+1)]2
[(1− δ2)g − (1− δ2)d]

=
2δ2T (log δ)

[1− δ2(T+1)]2
(1− δ2)(g − d),

g(T )− k(T ) = v(cT+1, cT )− v(cT+1, cT+1)

=
(1− δ2T )d + δ2T (1− δ2)g

1− δ2(T+1)
− (1− δ2(T+1))d− δ2(T+1)c

=
(1− δ2T )d + δ2T (1− δ2)g − [1− δ2T + δ2T (1− δ2)](1− δ2(T+1))d− (1− δ2(T+1))δ2(T+1)c

1− δ2(T+1)

=
δ2T (1− δ2)g − δ2T (1− δ2)d + (1− δ2(T+1))δ2(T+1)d− (1− δ2(T+1))δ2(T+1)c

1− δ2(T+1)

=
δ2T

1− δ2(T+1)
[(1− δ2)(g − d)− δ2(1− δ2(T+1))(c− d)],

q(T ) = L(cT+1, cT ) =
1− δ2(T+1)

1− δ2
,

p(T ) = L(cT+1, cT+1) =
1

1− δ2
.

Substituting these values into (34) and (35):

∂G

∂T

∣∣
α=1

= g′(T ) =
2δ2T (1− δ2)(log δ)

[1− δ2(T+1)]2
(g − d), (38)

∂G

∂α

∣∣
α=1

=
p(T )
q(T )

[g(T )− k(T )]

=
δ2T

[1− δ2(T+1)]2
[(1− δ2)(g − d)− δ2(1− δ2(T+1))(c− d)]. (39)
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Hence:
∂F

∂T

∣∣
α=1

− ∂G

∂T

∣∣
α=1

= 2δ2T (log δ)
{
c− d− (1− δ2)(g − d)

[1− δ2(T+1)]2
}

= 2δ2T (log δ)
[Λ(T )]2(c− d)− (1− δ2)(g − d)

[Λ(T )]2
, and

(40)

∂G

∂α

∣∣
α=1

− ∂F

∂α

∣∣
α=1

= δ2T
{(1− δ2)(g − d)− δ2(1− δ2(T+1))(c− d)

[1− δ2(T+1)]2
− [(1− δ2)(d− `) + (1− δ2(T+1))(c− d)]

}

=
δ2T

[Λ(T )]2
{(1− δ2)(g − d)− δ2Λ(T )(c− d)− [(1− δ2)(d− `) + Λ(T )(c− d)][Λ(T )]2} > 0,

(41)

where:
Λ(T ) = 1− δ2(T+1).

Substituting (40) and (41) into (20):

dαT+1
T (T )
dT

∣∣
T=T0

=
∂F
∂T

∣∣
α=1

− ∂G
∂T

∣∣
α=1

∂G
∂α

∣∣
α=1

− ∂F
∂α

∣∣
α=1

=
2(log δ){[Λ(T )]2(c− d)− (1− δ2)(g − d)}

(1− δ2)(g − d)− δ2Λ(T )(c− d)− [(1− δ2)(d− `) + Λ(T )(c− d)][Λ(T )]2
.

(42)

Computation of dv
dT

By (37) and (42):

∂F (T, αT+1
T (T ))

∂α
× dαT+1

T (T )
dT

∣∣∣∣
T=T0

=
δ2T [(1− δ2)(d− `) + Λ(T )(c− d)]2(log δ){[Λ(T )]2(c− d)− (1− δ2)(g − d)}

(1− δ2)(g − d)− δ2Λ(T )(c− d)− [(1− δ2)(d− `) + Λ(T )(c− d)][Λ(T )]2

:= 2δ2T (log δ)
Ψ
Φ

,

(43)

where:

Ψ := [(1− δ2)(d− `) + Λ(T )(c− d)]{[Λ(T )]2(c− d)− (1− δ2)(g − d)},
Φ := (1− δ2)(g − d)− δ2Λ(T )(c− d)− [(1− δ2)(d− `) + Λ(T )(c− d)][Λ(T )]2.

Substituting (36) and (43) into (19):

dv

dT

∣∣∣∣
T=T0

=
∂F (T, αT+1

T (T ))
∂T

+
∂F (T, αT+1

T (T ))
∂α

× dαT+1
T (T )
dT

∣∣∣∣
T=T0

= 2δ2T (log δ)
[
c− d +

Ψ
Φ

]

= 2δ2T (log δ)
[(c− d)Φ + Ψ

Φ
]
.

(44)
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Because log δ < 0, it follows then:

dv

dT
= 2δ2T (log δ)

{
(c− d)Φ + Ψ

Φ

}
> 0 ⇐⇒ (c− d)Φ + Ψ < 0.

If the latter is satisfied, the bimorphic distribution pT+1
T (αT+1

T ) is a NSD if T is smaller
than but sufficiently close to T0 = τ(δ,G). Q.E.D.

PROOF OF LEMMA 9: Consider ct-strategy for an arbitrary t ∈ {T, T + 1, T + 2, . . .}
and the beginning of period t+1 in a match, when ct-strategy is about to start cooper-
ation. Let αt be the conditional probability that the partner is the same strategy. The
conditional probability is 1 − αt that the partner has a longer trust-building period.
The (non-averaged) continuation payoff of ct-strategy at the beginning of t + 1 is

V (ct; p, t + 1) = αt{ c

1− δ2
+

δ(1− δ)
1− δ2

V (ct; p)}+ (1− αt){` + δV (ct; p)}. (45)

On the other hand, the continuation payoff of ct+1-strategy at the beginning of t+1
is

V (ct+1; p, t + 1) = αt{g + δV (ct+1; p)}
+(1− αt){d + δ(1− δ)V (ct+1; p) + δ2V (ct+1; p, t + 2)}. (46)

Notice that the payoff structure for ct+1-strategy at the beginning of period t + 2
when it just finished the trust building is the same as that of ct-strategy at t + 1, i.e.,

V (ct+1; p, t + 2) = V (ct; p, t + 1).

Therefore (46) becomes

V (ct+1; p, t + 1) = αt{g + δV (ct+1; p)}
+(1− αt){d + δ(1− δ)V (ct+1; p) + δ2V (ct; p, t + 1)}

⇐⇒ V (ct+1; p, t + 1) =
1

1− (1− αt)δ2

[
αt{g + δV (ct+1; p)}

+(1− αt){d + δ(1− δ)V (ct+1; p)}]. (47)

From the assumption that the average payoffs of ct and ct+1 are the same,

V (ct; p) = V (ct+1; p). (48)

Then, since the payoff until t is the same for both ct and ct+1, we also have

V (ct; p, t + 1) = V (ct+1; p, t + 1). (49)

(49) implies that the RHS of (45) and (47) must be the same. Using (48) and letting
V ∗(p) = V (ct; p) = V (ct+1; p), αt must satisfy

αt{ c

1− δ2
+

δ(1− δ)
1− δ2

V ∗(p)}+ (1− αt){` + δV ∗(p)}

=
αt{g + δV ∗(p)}+ (1− αt){d + δ(1− δ)V ∗(p)}

1− (1− αt)δ2
.
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Since this equation does not depend on t, we have established that αt = α for all
t = T, T + 1, . . ., i.e., the fraction of cT+τ -strategy is of the form α(1− α)τ . Q.E.D.

PROOF OF LEMMA 10: From Table II(a), the long-run payoff of cT -strategy is decom-
posed as

V (cT ; p∞T (α)) = αV (cT , cT ; p∞T (α))
+(1− α)V (cT , cT+1; p∞T (α)). (50)

The long-run payoff of cT+1-strategy is decomposed as

V (cT+1; p∞T (α)) = αV (cT+1, cT ; p∞T (α))
+(1− α)[α{d + δ2V (cT , cT ; p∞T (α)) + δ(1− δ)V (cT+1; p∞T (α))}

(1− α){d + δ2V (cT , cT+1; p∞T (α)) + δ(1− δ)V (cT+1; p∞T (α))}]
= αV (cT+1, cT ; p∞T (α))

+(1− α)[d + δ2V (cT ; p∞T (α)) + δ(1− δ)V (cT+1; p∞T (α))],

where the last equality uses (50).
Equivalently we can write the above as

[1− (1− α)δ(1− δ)]V (cT+1; p∞T (α)) = αV (cT+1, cT ; p∞T (α)) + (1− α)d
+(1− α)δ2V (cT ; p∞T (α)). (51)

Similarly from Table II(b) and II(c),

V (cT+2; p∞T (α)) = αV (cT+2, cT ; p∞T (α))
(1− α)[d + δ2V (cT+1; p∞T (α)) + δ(1− δ)V (cT+2; p∞T (α))].

Note that cT+1 and cT+2 earn the same payoff against cT and thus V (cT+2, cT ; p∞T (α)) =
V (cT+1, cT ; p∞T (α)). Therefore the long-run payoff of cT+2-strategy solves

V (cT+2; p∞T (α)) = αV (cT+1, cT ; p∞T (α))
+(1− α)[[d + δ2V (cT+1; p∞T (α)) + δ(1− δ)V (cT+2; p∞T (α))].

This is equivalent to

[1− (1− α)δ(1− δ)]V (cT+2; p∞T (α)) = αV (cT+1, cT ; p∞T (α)) + (1− α)d
+(1− α)δ2V (cT+1; p∞T (α)). (52)

If V (cT ; p∞T (α)) = V (cT+1; p∞T (α)), then the last term of the right hand sides of
(51) and (52) are the same and therefore

V (cT+1; p∞T (α)) = V (cT+2; p∞T (α)).

We can continue this argument for any t > T . Q.E.D.

PROOF OF LEMMA 11: We prove this lemma by a series of steps.
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(a) For any (G,T, α, δ), v(cT ; p∞T (α)) = v(cT ; pT+1
T (α)).

Proof of (a): Against cT -strategy, all strategies with longer trust-building behave
the same way.

(b) For any (G,T, α, δ), let ∆v∞T (α, δ) := v(cT ; p∞T (α)) − v(cT+1; p∞T (α)). Then for
any (G,T, δ), ∆v∞T (1, δ) = ∆vT (1, δ).

Proof of (b): Clearly when α = 1, the value differences between cT and cT+1

under p∞T and pT+1
T are the same.

(c) For any (G,T, δ), ∆v∞T (0, δ) < 0.

Proof of (c): By computation,

∆v∞T (0, δ) = vI(cT , cT+1)− vI(cT+1, cT+2)

=
(1− δ2T )d + δ2T (1− δ2)`

1− δ2(T+1)
− (1− δ2(T+1))d + δ2(T+1)(1− δ2)`

1− δ2(T+2)

=
1

(1− δ2(T+1))(1− δ2(T+2))

[
{(1− δ2T )d + δ2T (1− δ2)`}(1− δ2(T+2))

−{(1− δ2(T+1))d + δ2(T+1)(1− δ2)`}(1− δ2(T+1))
]

=
1

(1− δ2(T+1))(1− δ2(T+2))

[
−(d− `){1− δ2(T+1) − (1− δ2(T+2))(1− δ2T )}

]

<
1

(1− δ2(T+1))(1− δ2(T+2))

[
−(d− `){1− δ2(T+1) − (1− δ2(T+1))(1− δ2T )}

]

=
1

(1− δ2(T+1))(1− δ2(T+2))

[
−(d− `)(1− δ2(T+1))δ2T

]
< 0.

(d) For any (G,T, δ) and any α < 1, ∆v∞T (α, δ) > ∆vT (α, δ).

Proof of (d): Since cT+1 cannot be exploited under the two-strategy distribution
pT+1

T while it is exploited by strategies with longer trust-building periods under
p∞T , v(cT+1; pT+1

T (α)) > v(cT+1; p∞T (α)). From (a), the statement holds.

Finally, we combine the above to prove the lemma. (b), (c), and (d) together imply
that, for a given (G,T, δ), the graph of ∆v∞T (α, δ) is uniformly above the graph of
∆vT (α, δ) except at α = 1 and both graph starts from a negative value at α = 0.
Hence, if there exists α such that ∆vT (α, δ) = 0 and ∂∆vT

∂α (α, δ) < 0, then the desired
α∗ with the same properties for ∆v∞T also exists. (See Figure 2.)

The existence of such α for ∆vT is warranted if δ > δ̂G(T ) so that the slope of ∆ṽT

is negative, and if δ < δG(T ) but sufficiently close to is so that ∆ṽT (α, δ) > 0 near
α = 1. Q.E.D.

PROOF OF LEMMA 12: Fix an arbitrary τ = 0, 1, 2, . . .. By computation,

vI(cT+τ , cT+τ ) = (1− δ2(T+τ))d + δ2(T+τ)c,

vI(sτ , cT+τ ) =
1

1− δ2(T+τ+2)

[
(1− δ2(T+τ))d + δ2(T+τ)(1− δ2)c + δ2(T+τ+1)(1− δ2)g

]
.
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For δ ≈ δG(T ),
(1− δ2)g ≈ δ2(1− δ2T )(c− d) + (1− δ2)c.

Hence

vI(sτ , cT+τ ) ≈ 1
1− δ2(T+τ+2)

[
(1− δ2(T+τ))d + δ2(T+τ)(1− δ2)c

+δ2(T+τ+1){δ2(1− δ2T )(c− d) + (1− δ2)c}
]

=
1

1− δ2(T+τ+2)

[
(1− δ2(T+τ))d + δ2(T+τ)c− δ2(T+τ+1)c

+δ2(T+τ+1){−δ2(1− δ2T )d + (1− δ2(T+1))c}
]

=
1

1− δ2(T+τ+2)

[{
(1− δ2(T+τ))d + δ2(T+τ)c

}
(1− δ2(T+τ+2) + δ2(T+τ+2))

−δ2(T+τ+2){δ2T c + (1− δ2T )d}
]

= vI(cT+τ , cT+τ )− δ2(T+τ+2)

1− δ2(T+τ+2)
δ2T (1− δ2τ )(c− d) < vI(cT+τ , cT+τ ).

Hence for δ sufficiently close to δG(T ), the in-match average payoff is smaller for
sτ . Moreover, it is easy to see that

r(cT+τ , cT+τ ) =
1

1 + δ
> r(sτ , cT+τ ) =

1− δ2(T+τ+2)

1 + δ
.

By definition,

v(cT+τ ; p∞T (α)) =
{

w + α(1− α)τr(cT+τ , cT+τ )vI(cT+τ , cT+τ )

+(1− α)τ+1r(cT+τ , cT+τ+1)vI(cT+τ , cT+τ+1)
}

/
{

R1 + α(1− α)τr(cT+τ , cT+τ ) + (1− α)τ+1r(cT+τ , cT+τ+1)
}

where w =
∑τ−1

k=0 α(1−α)kr(cT+τ , cT+k)vI(cT+τ , cT+k) and R1 =
∑τ−1

k=0 α(1−α)kr(cT+τ , cT+k).
Notice that sτ behaves the same way as cT+τ against cT+k for k = 0, 1, . . . , τ − 1

and cT+τ+1 and strategies with longer trust-building periods. Hence

v(sτ ; p∞T (α)) =
{

w + α(1− α)τr(sτ , cT+τ )vI(sτ , cT+τ )

+(1− α)τ+1r(cT+τ , cT+τ+1)vI(cT+τ , cT+τ+1)
}

/
{

R1 + α(1− α)τr(sτ , cT+τ ) + (1− α)τ+1r(cT+τ , cT+τ+1)
}

Let R2 := α(1− α)τr(cT+τ , cT+τ ) and R3 := (1− α)τ+1r(cT+τ , cT+τ+1). Then

v(cT+τ ; p∞T (α)) =
( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

) R1 + R3

R1 + R2 + R3
+

R2v
I(cT+τ , cT+τ )

R1 + R2 + R3

=
( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

)

+
R2

R1 + R2 + R3

[
vI(cT+τ , cT+τ )

−
( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

)]
. (53)
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Let R′
2 := α(1− α)τr(sτ , cT+τ ). Then

v(sτ , ; p∞T (α)) =
( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

) R1 + R3

R1 + R′
2 + R3

+
R′

2v
I(sτ , cT+τ )

R1 + R′
2 + R3

=
( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

)

+
R′

2

R1 + R′
2 + R3

[
vI(sτ , cT+τ )

−
( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

)]
. (54)

Since R2 > R′
2,

R1+R3
R1+R2+R3

< R1+R3
R1+R′2+R3

, which implies that R′2
R1+R′2+R3

< R2
R1+R2+R3

.
Therefore the second term of (53) is larger than that of (54). Q.E.D.

PROOF OF PROPOSITION 5: We consider all on-path deviations that make a difference
in the average payoff.

On-path deviations during the “common” trust-building periods t = 1, 2, . . . , T :
The on-path history is unique and of the form {(D, D), . . . , (D, D)}. Possible devi-

ation types that make difference in the payoffs are:

(a) Play e after on-path history, during the common TB.

Recall the logic of Lemma 2 (for monomorphic distribution). We showed that
such strategy has average payoff d but any cT strategy under pT has average
payoff more than d since it is a convex combination of c and d. Now we cannot
use cT but can use c∞ which has the same payoff as cT under α∗. c∞ earns g
after TB, against any cτ where ∞ > τ ≥ T . Hence the average payoff of c∞ is
more than d and thus it is better than choosing e during TB.

(b) Play C after on-path history, during the common TB.

Clearly, strategies in this class have smaller average payoff than d under p∞T (α).

Thanks to the new definition that during TB, only (D, D) will induce k, we do
not need to distinguish further devisions after C during TB.

On-path deviations in t ≥ T +1: note that there are three kinds of on-path histories
after the common trust-building periods.

1. {(D, D)t−1}: This occurs when both partners had TB not less than t − 1. For
the continuation decison node, add one more (D, D).

Action choice phase: Since both C and D are on-path actions we do not need to
check.

Continuation decision phase: The analysis is the same as (a) above.

2. {(D, D)τ , (C, C)t−τ} for some τ ≥ T : This occurs when both partners had the
same τ periods of TB. For the continuation decision node, add one more (C, C).
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Action choice phase: The incentive constraint is proved to be satisfied in Lemma
12.

Continuation decision phase: If a strategy chooses C but e afterwards during the
cooperation periods, the payoff is less than the above deviation strategy.

3. {(D, D)t−1, (C, D)}: This is relevant only at the continuation decision node in
t. This happens when one partner had t− 1 periods of trust-building, while the
other had a longer TB.

However, by the definition of cT strategy, the partner will choose e and thus your
decision does not matter.

Q.E.D.
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