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Abstract

We propose, in this paper, a new valuation method for a contingent
claim, which approximates to the exponential utility indifference valua-
tion. In particular, we treat both ask and bid valuations. In the definition
of the exponential utility indifference valuation, we require a strong con-
dition related to the underlying contingent claim. The new valuation in
this paper succeeds in reducing this condition by using a kind of power
functions instead of the exponential function. Furthermore, we shall in-
vestigate some basic properties and an asymptotic behavior of our new
valuation.

Keywords: Incomplete markets, Indifference value, p-optimal martingale mea-
sure, Reverse Hölder inequality.

1 Introduction

Our aim of this paper is to obtain an approximate approach to the exponen-
tial utility indifference valuation (EUIV, for short) by using a kind of power
functions.

In mathematical finance, the problem of valuation for a contingent claim
in an incomplete market is very important. Recently, many researchers have
studied the utility indifference valuation method, of which the definition is given
by as follows: We start with an incomplete market with the maturity T > 0,
whose asset fluctuation is described by a semimartingale X. Moreover, we
consider an investor having initial capital xt at time t, and who intends to sell
a contingent claim B. Let U be his/her utility function. In other words, U is
an R-valued continuous increasing concave function defined on R. We define
an adapted process Ct(B) by

esssupϑ∈Θ E [U (xt + Gt,T (ϑ))|Ft]
= esssupϑ∈Θ E [U (xt + Ct(B) + Gt,T (ϑ) − B)|Ft] , (1.1)
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where Gt,T (ϑ) :=
∫ T

t

ϑsdXs and Θ a suitable set of predictable processes, rep-

resents the set of all self-financing strategies. Then, we call Ct(B) the utility
indifference valuation, which is one of candidates for the asking price of the
contingent claim B. In addition, the valuation Ct(B) strongly depends on the
preference of the investor who intends to sell B. The left hand side of (1.1) is the
expected utility maximization problem when he/she does not sell the contingent
claim B. On the other hand, the right hand side is the case where he/she sells B
for the price Ct(B) at time t and agrees to pay B at the maturity T . In partic-
ular, there has been much literature on the exponential utility case, that is, the
case where U is given by U(x) = −e−αx, for α > 0. See Becherer (2004), Frit-
telli (2000), Rouge and El Karoui (2000), Musiela and Zariphopoulou (2004a,
2004b), Young (2004), and so on. Besides, Mania and Schweizer (2005) (MS,
for short) have provided the dynamics for the case where the asset price pro-
cess is given by a continuous semimartingale. Remark that we call Ct(B) the
exponential utility indifference valuation (EUIV), if U is the exponential utility
function.

On the other hand, when we define the EUIV, we need to assume the fol-
lowing strong condition with respect to the underlying contingent claim:

E
[
eαB
]

< ∞. (1.2)

For example, in the case where B is a European call option and X is given by
a geometric Brownian motion, (1.2) does not hold, because, roughly speaking,
the distribution of B is near to one of eY , where Y is a normal random vari-
able. Hence, models satisfying the condition (1.2) do not include some typical
important ones as the above example. At this, we try to reduce the condition
(1.2) to, for a sufficient large n ∈ N,

E[Bn] < ∞, (1.3)

equivalently E[enY ] < ∞. Now, we recall the definition of “e” as follows:

ex = lim
n→∞

(
1 +

x

n

)n

,

then, for any sufficient large n, we can say that
(
1 +

x

n

)n

is near to ex. If we
denote, for a sufficient large number n,

U(x) = −
(
1 +

αx

n

)−n

or −
(
1 − αx

n

)n

,

then we can approximate the EUIV under the condition (1.3). Remark that this
function U is not a utility function exactly, since not concave. Although, for x <
n/α, U is concave, so that we can say that U is almost concave. Instead of the
exponential utility, if we adopt the function U as the underlying utility function,
then we may obtain an approximate approach to the EUIV. On the other hand,
it is difficult for us to treat U directly. Therefore, we try to decompose the
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value xt + Ct(B) + Gt,T (ϑ) − B into the Ft-measurable part xt + Ct(B), the
gain process part Gt,T (ϑ) and the contingent claim part B. Thus, instead of U ,
we consider, for α > 0 and n ∈ N,

Uα,n(x, y, z) := −
(
1 +

αx

n

)−n (
1 − αy

n

)n+1 (
1 +

αz

n

)n

.

Note that, if n is sufficient large, then Uα,n(x, y, z) is very near to −
(
1 +

α

n
(x + y − z)

)−n

or −
(
1 − α

n
(x + y − z)

)n

. On the other hand, if we denote

Uα,exp(x, y, z) := − exp(−α(x + y − z)),

then the EUIV, denoted by Cα,exp
t (B), satisfies the following:

esssupϑ∈Θ E [Uα,exp(xt, Gt,T (ϑ), 0)|Ft]
= esssupϑ∈Θ E [Uα,exp(xt + Cα,exp

t (B), Gt,T (ϑ), B)|Ft] .

Remark that Cα,exp
t (B) does not depend on the initial capital xt. Thus, by

the same way as the EUIV, we define an adapted process Cα,n
t (B) as a process

satisfying

esssupϑ∈Θ E [Uα,n(xt, Gt,T (ϑ), 0)|Ft]
= esssupϑ∈Θ E [Uα,n(xt + Cα,n

t (B), Gt,T (ϑ), B)|Ft] .

This process Cα,n
t (B) may be a strong candidate of approximations to the EUIV.

Hence, we shall investigate some properties of Cα,n
t (B) in this paper. Remark

that Cα,n
t (B) depends on xt. Henceforth, we fix xt = 0.

The structure of this paper is as follows: In Section 2, we state the standing
assumptions and the exact definition of our new valuation Cα,n

t (B). In particu-
lar, we need the closedness of the set of all self-financing strategies in the Ln+1

sense. This closedness is close related to the 1+
1
n

-optimal martingale measure.
Thus, some standing assumptions are concerned in it. Moreover, remark that it
is close related to the projection of “1” onto a suitable space of the stochastic
integrations. In addition, we introduce, in Section 3, an example satisfying the
all standing assumptions.

In order to make sure that our new valuation is useful as an approximate
approach to the EUIV, we investigate its basic properties and the asymptotic
behavior as n tends to 0. In Section 4, we prove that our new valuation has
same basic properties as the EUIV approximately. In particular, we show that
there exists a duality relationship between a portfolio optimization problem
related to our new valuation and an optimization problem among equivalent

martingale measures, which is related to the 1+
1
n

-optimal martingale measure.

Furthermore, we assert in Section 5 that Cα,n
t (B) converges to the EUIV as

n tends to ∞ in probability. To see this, it is worth while to notice that the
p-optimal martingale measure converges to the minimal martingale measure as
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p tends to 1, which has been proved by Grandits and Rheinländer (2002) (GR,
for short).

On the other hand, we can say that the definition of the utility indifference
valuation is an ask-pricing method, which is one from a seller’s view. Thus, in
Section 6, we extend our new valuation to one from a buyer’s view. That is, we
treat a bid-pricing method. In addition, we introduce a duality relation as in
Section 4, and investigate some basic properties of the valuation from a buyer’s
view.

2 Preliminaries

In this section, we introduce the three standing assumptions and some notations.
Moreover, we formulate the exact definition of our new valuation Cα,n

t (B) under
the standing assumptions. In other words, we give the definition of the set of
all self-financing strategies.

Throughout this paper, we consider an incomplete financial market com-
posed of one riskless asset whose price is “1” at all time, and d risky assets
described by an Rd-valued continuous semimartingale X. Suppose that the
maturity is T > 0. Let (Ω,F , P ; F = {Ft}t∈[0,T ]) be a completed filtered prob-
ability space with a right-continuous filtration F such that F0 is trivial and
contains all null sets of F , and FT = F . Furthermore, in this paper, we treat
a suitable set of Rd-valued predictable X-integrable processes ϑ as the set of
all self-financing strategies, denoted by Θ. Let B be an FT -measurable ran-
dom variable. Throughout this paper, we regard B as a contingent claim, that
is, a pay-off at the maturity T . We fix a positive real number α and a large
odd number n. To simplify notations, we restrict n within odd numbers. For
all unexplained notations, we refer to Dellacherie and Meyer (1982) and GR.
Throughout this paper, C denotes a constant in (0,∞) which may vary from
line to line.

Firstly, we give one of the standing assumptions related to the underlying
contingent claim B.

Assumption 2.1 We assume that B ≥ 0 and B ∈ Ln(P ).

In the definition of the EUIV, we do not assume the positivity of B. However,

since the term
(
1 +

α

n
B
)−1

appears in the sequel, we restrict B to positive in
this paper.

Next, we prepare some notations in order to introduce the other standing
assumptions. Let P 0 be a probability measure which is equivalent to P , and
p > 1.

Definition 2.2 (1) Let S ≤ T be a stopping time. We denote by SV(P 0) the
linear subspace of L∞(P 0) spanned by the simple stochastic integrals of the
form htr(XT2 − XT1), where S ≤ T1 ≤ T2 ≤ T are stopping times such that the
stopped process XT2 is bounded, and h is a bounded Rd-valued FT1-measurable
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random variable. Set V(P 0) = 0V(P 0).
(2) A signed martingale measure under P 0 is a signed measure Q � P 0 with

EP0

[
dQ

dP 0

]
= 1 and EP0

[
dQ

dP 0
f

]
= 0 for all f ∈ V(P0).

(3) Ms(P 0) is the space of all signed martingale measures under P 0, and
Me(P 0) is the subset of Ms(P 0) consisting of probability measures being equiv-
alent to P 0. Moreover, we set Mx

p(P 0) := Mx(P 0) ∩ Lp(P 0) for x ∈ {e, s}.
(4) The p-optimal martingale measure with respect to P 0 is defined as the ele-
ment of Ms

p(P 0) which minimizes Lp(P 0)-norm.
(5) Let Y be a uniformly integrable P 0-martingale with Y0 = 1 and YT > 0. We
say that Y satisfies the reverse Hölder inequality Rp(P 0), if there is a constant
C such that for every stopping time S ≤ T , we have

EP0

[(
YT

YS

)p ∣∣∣FS

]
≤ C.

The 1 +
1
n

-optimal martingale measure will play an important role, so that the
following assumption is essential.

Assumption 2.3 We assume that the 1 +
1
n

-optimal martingale measure Q(n)

exists in Me
1+ 1

n

(P ), and its density process Z(n) satisfies the reverse Hölder
inequality R1+ 1

n
(P ).

Since X is a continuous semimartingale, it is special under P , and its canonical
decomposition is given by X = X0 + M + A with M a local martingale, A a
predictable process, and M0 = A0 = 0. Moreover, if P 0 is equivalent to P ,
then X is also a special semimartingale under P 0. Let us denote its canonical
decomposition under P 0 as follows:

X = X0 + M0 + A0.

Definition 2.4 (1) We denote by SKp(P 0) the closure in Lp(P 0) of SV(P 0) for
a stopping time S ≤ T . In particular, let Kp(P 0) := 0Kp(P 0).
(2) Let Lp(M0) be the space of all Rd-valued predictable processes ϑ such that

‖ϑ‖Lp(M0) := E
1/p
P0

[(∫
ϑtrd[M 0]ϑ

)p/2

T

]
< ∞.

(3) Let Lp(A0) be the space of all Rd-valued predictable processes ϑ such that

‖ϑ‖Lp(A0) := E
1/p
P0

[(∫
|ϑtrdA0|

)p

T

]
< ∞.

(4) A positive process Y satisfies RLLogL(P 0) if there exists a constant C > 0
such that

sup
S

∥∥∥∥EP0

[
YT

YS
log+ YT

YS

∣∣∣FS

]∥∥∥∥
∞

≤ C,
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where the supremum is taken over all stopping times S ≤ T .

We define
Θn+1(P 0) := Ln+1(A0) ∩ Ln+1(M0)

and

Gt,T (Θ) :=

{∫ T

t

ϑsdXs|ϑ ∈ Θ

}
,

for a suitable set Θ of Rd-valued X-integrable predictable processes. In particu-
lar, we denote GT (Θ) := G0,T (Θ). Remark that we can rearrange the definition
of Θn+1(P 0) as

Θn+1(P 0) := {ϑ|G(ϑ) ∈ Sn+1(P 0)}.
By Theorem 4.1 of Grandits and Krawczyk (1998), GT (Θn+1(P )) is Ln+1(P )-
closed under Assumption 2.3. Proposition 4.7 of GR yields that there exists
the minimal entropy martingale measure the density process of which satisfies
RLLogL(P ). In addition, Lemma 2.1 of GR implies

Gt,T (Θn+1(P )) = tKn+1(P ).

Moreover, since n is odd, Propositions 4.2 and 4.4 of GR imply, by passing to a
version if necessary,

Z
(n)
t,T := Z

(n)
T /Z

(n)
t = C

(n)
t

(
1 +

tf
(n)
T

n

)n

,

where

Z
(n)
t := E

[
dQ(n)

dP

∣∣∣Ft

]
,

C
(n)
t is an Ft-measurable positive random variable, and tf

(n)
T ∈ tKn+1(P ). In

particular, −tf
(n)
T /n is the projection of “1” onto tKn+1(P ) in Ln+1(P ).

Thirdly, we define a probability measure P n,B as

dP n,B

dP
:= Cn,B

(
1 +

α

n
B
)n

,

where Cn,B ∈ R+. Furthermore, we denote

Zn,B
t,T :=

Zn,B
T

Zn,B
t

= Cn,B
t

(
1 +

α

n
B
)n

and Zn,B
t := E

[
dP n,B

dP

∣∣∣Ft

]
,

where Cn,B
t is an Ft-measurable positive random variable. Remark that X is

also a semimartingale under P n,B.
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Assumption 2.5 We assume that the 1+
1
n

-optimal martingale measure Q(n),B

with respect to P n,B exists in Me
1+ 1

n

(P n,B), and its density process Z(n),B with

respect to P n,B satisfies R1+ 1
n
(P n,B), where

Z
(n),B
t := EPn,B

[
dQ(n),B

dP n,B

∣∣∣Ft

]
.

We have

Z
(n),B
t,T := Z

(n),B
T /Z

(n),B
t = C

(n),B
t

(
1 +

tf
(n),B
T

n

)n

,

where C
(n),B
t is an Ft-measurable positive random variable, and tf

(n),B
T ∈

tKn+1(P n,B). In particular, −tf
(n),B
T /n is the projection of “1” onto tKn+1(P n,B)

in Ln+1(P n,B).
In order to define the process Cα,n

t (B) exactly, we have to determine the set
of all self-financing strategies. Note that we have, for an Rd-valued predictable
process ϑ,

E

[(
1 − α

n
Gt,T (ϑ)

)n+1 (
1 +

α

n
B
)n ∣∣∣Ft

]
=

1

Cn,B
t

EPn,B

[(
1 − α

n
Gt,T (ϑ)

)n+1 ∣∣∣Ft

]
.

Moreover, by the same sort of argument as the above, GT (Θn+1(P n,B)) is
Ln+1(P n,B)-closed under Assumption 2.5. Thus, there exists a solution to the
following minimization problem:

max
ϑ∈Θn+1(Pn,B)

E

[(
1 − α

n
Gt,T (ϑ)

)n+1 (
1 +

α

n
B
)n ∣∣∣Ft

]
.

Hence, Θn+1(P n,B) should be the set of all self-financing strategies. Now, we
define

Θ̃n+1(P n,B) :=
{
ϑ
∣∣∣G(ϑ) is a Q(n),B-martingale and GT (ϑ) ∈ Ln+1(P n,B)

}
.

In addition, we need one more preparation.

Definition 2.6 A P 0-martingale Y is in bmop(P 0) if there exists a constant C
such that, for any t ∈ [0, T ],

EP0 [([Y ]T − [Y ]t)p/2|Ft] ≤ C.

Then, we have the following relationship under Assumptions 2.1, 2.3 and 2.5:

Lemma 2.7 We have Θn+1(P n,B) = Θ̃n+1(P n,B).
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Proof. Firstly, we prove that, for any ϑ ∈ Θn+1(P n,B), G(ϑ) is a local
Q(n),B-martingale. Let the canonical decomposition of X under P n,B be given
by

X = X0 + Mn,B + An,B .

By Lemma 4.6 of Grandits and Krawczyk (1998) , the density process Z(n),B of
Q(n),B with respect to P n,B is denoted by

Z(n),B = E(N (n),B),

where N (n),B is a P n,B-martingale and in bmo1+ 1
n
(P n,B). On the other hand,

since G(ϑ) ∈ Sn+1(P n,B),
[∫

ϑdMn,B

]
is in L(n+1)/2(P n,B). Thus, we have

EPn,B

[∣∣∣∣[∫ ϑdMn,B, N (n),B

]
T

∣∣∣∣]
≤

∥∥∥∥∥
[∫

ϑdMn,B

] 1
2

T

∥∥∥∥∥
Ln+1(Pn,B)

∥∥∥[N (n),B ]
1
2
T

∥∥∥
L1+ 1

n (Pn,B)

< ∞,

that is,
[∫

ϑdMn,B, N (n),B

]
is P n,B-integrable. Since the product Z(n),BX is

a local P n,B-martingale, we obtain An,B = −〈N (n),B , Mn,B〉. Thus, we have,
for any ϑ ∈ Θn+1(P n,B),∫

ϑtrdAn,B = −
∫

ϑtrd〈N (n),B , Mn,B〉.

As a result, by Corollary 3.16 of Choulli, Krawczyk and Stricker (1998), G(ϑ)
is a local Q(n),B-martingale.

In addition, by Theorem V.2 of Protter (1990), there exists a C > 0 such
that

‖GT (ϑ)‖L1+ 1
n (Pn,B)

≤
∥∥∥∥ sup

0≤t≤T
Gt(ϑ)

∥∥∥∥
L1+ 1

n (Pn,B)

≤ C‖G(ϑ)‖Sn+1(Pn,B) < ∞.

Since G(ϑ) is a local Q(n),B-martingale, G(ϑ) is a Q(n),B-martingale. Thus, we
obtain “ ⊆ ”.

Suppose that ϑ ∈ Θ̃n+1(P n,B). By Theorem 4.12 of Choulli, Krawczyk and
Stricker (1999), there exists a constant C > 0 such that

‖G(ϑ)‖Sn+1(Pn,B) ≤ C‖GT (ϑ)‖Ln+1(Pn,B) < ∞.

Hence, ϑ ∈ Θn+1(P n,B), from which “ ⊇ ” holds. �

By Lemma 2.7, we can consider that Θ̃n+1(P n,B) is appropriate as the set of
all self-financing strategies. Now, we denote

Θ(n)
B := Θn+1(P n,B) = Θ̃n+1(P n,B).
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Again, we define the process Cα,n
t (B) as follows:

esssup
ϑ∈Θ

(n)
0

E
[
Uα,n(0, Gt,T (ϑ), 0)

∣∣∣Ft

]
= esssup

ϑ∈Θ
(n)
B

E
[
Uα,n(Cα,n

t (B), Gt,T (ϑ), B)
∣∣∣Ft

]
,

where Uα,n is given by Uα,n(x, y, z) = −
(
1 +

αx

n

)−n (
1 − αy

n

)n+1 (
1 +

αz

n

)n

.
On the other hand, as for the exponential utility case, we define

Θexp :=
{

ϑ ∈ L(X)
∣∣∣G(ϑ) is a Q-martingale for all Q ∈ Me

ent(P )
}

,

and
Me

ent(P ) :=
{
Q ∈ Me(P )

∣∣∣H(Q|P ) < ∞
}

,

where H(Q|P ) = E

[
dQ

dP
log

dQ

dP

]
, if Q � P , = ∞, otherwise. Then, the

exponential utility indifference valuation (EUIV) Cα,exp
t (B) is defined as an

F -adapted process satisfying

esssupϑ∈Θexp E
[
Uα,exp(0, Gt,T (ϑ), 0)

∣∣∣Ft

]
= esssupϑ∈Θexp E

[
Uα,exp(Cα,exp

t (B), Gt,T (ϑ), B)
∣∣∣Ft

]
,

where Uα,exp(x, y, z) = − exp(−α(x + y − z)).

3 Examples

In this section, we introduce an example satisfying Assumptions 2.1, 2.3 and 2.5.
Although Assumptions 2.1 and 2.3 are natural comparatively, Assumption 2.5 is
artifical one. Then, we have to reveal that models satisfying these assumptions
include some important and typical cases.

To be simplicity, we consider only the case where d = 1. Let W :=
(W 1, W 2, . . . , W l) be an l-dimensional Brownian motion, where l ≥ 2. Suppose
that the filtration F is the P -augmentation of the filtration generated by W ,
and there exists a predictable process λ such that the canonical decomposition
of X is given by

Xt = X0 + Mt + At = X0 + Mt +
∫ t

0

λsd〈M 〉s. (3.1)

In other words, we assume what is called the structure condition (SC) for the
process X. Moreover, we denote

K̂t :=
∫ t

0

λ2
sd〈M 〉s,
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which is called the mean-variance trade-off process. Then, we assume that K̂
is bounded. Furthermore, in view of the martingale representation theorem, we
can represent M as

Mt =
l∑

i=1

∫ t

0

σi
sdW i

s ,

for some Rl-valued predictable process σ. Thus, X is represented as

Xt = X0 +
l∑

i=1

∫ t

0

σi
sdW i

s +
l∑

i=1

∫ t

0

λs(σi
s)

2ds.

Now, we assume that X is in Ln(P ) and eX is not integrable. For example,
the case where σt = Xtηt and λt = ζt/Xt for some Rl and R-valued bounded
predictable processes η and ζ, respectively. In addition, we assume that each
|ηi| and |ζ| are positive far away from 0.

Next, suppose that the underlying contingent claim B satisfies Assumption
2.1. For example, the European call option (XT − K)+, where K is its strike
price. Since B ∈ Ln(P ), we have, by Corollary 4 of Theorem IV.42 of Protter
(1990), (

1 +
α

n
B
)n

= E
[(

1 +
α

n
B
)n]

ET

(
l∑

i=1

∫ ·

0

νi
sdW i

s

)
,

where νi is a predictable process such that
∫ T

0

(
νi

s

)2
ds < ∞. Let P̂ be the

minimal martingale measure (see Föllmer and Schweizer (1991)), so that its
density process Ẑ is given by

Ẑt = Et

(
−
∫ ·

0

λsdMs

)
= exp

(
−
∫ t

0

λsdMs − 1
2

∫ t

0

λ2
sd〈M 〉s

)
.

Remark that P̂ is in Me
1+ 1

n

(P ), so that Assumption 2.3 is satisfied by The-

orem 4.1 of Grandits and Krawczyk (1998). As for Ẑ, we have the following
representation:

Ẑ = exp

(
−

l∑
i=1

∫ t

0

λsσ
i
sdW i

s −
1
2

l∑
i=1

∫ t

0

(
λsσ

i
s

)2
ds

)
.

Hence, if we denote

Ẑn,B
t := EPn,B

[
dP̂

dP n,B

∣∣∣Ft

]
,

then there exists a constant C > 0 such that

EPn,B

( Ẑn,B
T

Ẑn,B
t

)1+ 1
n
∣∣∣∣∣Ft
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= E

( ẐT

Ẑt

)1+ 1
n
(

Zn,B
T

Zn,B
t

)− 1
n
∣∣∣∣∣Ft


= E

[
E1+ 1

n

t,T

(
−
∫ ·

0

λsdMs

)
E− 1

n

t,T

(
l∑

i=1

∫ ·

0

νi
sdW i

s

) ∣∣∣∣∣Ft

]

= E

[
exp

(
−
∫ T

t

(
1 +

1
n

)
λsdMs − 1

2

∫ T

t

(
1 +

1
n

)
λ2

sd〈M 〉s
)

× exp

(
− 1

n

l∑
i=1

∫ T

t

νi
sdW i

s +
1
2n

l∑
i=1

∫ T

t

(
νi

s

)2
ds

) ∣∣∣∣∣Ft

]

= E

[
Et,T

(
−

l∑
i=1

∫ ·

0

(
n + 1

n
λsσ

i
s +

νi
s

n

)
dW i

s

)

× exp

(
n + 1

2

l∑
i=1

∫ T

t

(
λsσ

i
s + νi

s

n

)2

ds

) ∣∣∣∣∣Ft

]
≤ C,

where Et,T := ET /Et, that is, P̂ satisfies R1+ 1
n
(P n,B). Hence, we can conclude

that Assumption 2.5 is satisfied.
In summary, the models of which the asset price is expressed by (3.1) satisfy

the all standing assumptions under the following conditions:
(1) X is in Ln(P ),
(2) the underlying filtration F is given by the P -augmentation of the Brownian
motion,
(3) the mean-variance trade-off process is uniformly bounded.

4 Duality and some properties

We focus on some basic properties of our new valuation Cα,n
t (B) in this section.

In particular, we are interested whether or not Cα,n
t (B) satisfies the same basic

properties as the EUIV. To see this, we need some preparations.
For an Ft-measurable random variable xt, we define

V α,n,B
t (xt) := esssup

ϑ∈Θ
(n)
B

E[Uα,n(xt, Gt,T (ϑ), B)|Ft].

Then, we can rewrite the definition of Cα,n
t (B) as

V α,n,0
t (0) = V α,n,B

t (Cα,n
t (B)).

We have

V α,n,B
t (0)

V α,n,0
t (0)

=
V α,n,B

t (0)

V α,n,B
t (Cα,n

t (B))
=
(
1 +

α

n
Cα,n

t (B)
)n

,

11



namely,

Cα,n
t (B) =

n

α


(

V α,n,B
t (0)

V α,n,0
t (0)

) 1
n

− 1

 .

Remark that, by Proposition 4.4 of GR and Assumption 2.3, we have

V α,n,0
t (0) = esssup

ϑ∈Θ
(n)
0

E [Uα,n(0, Gt,T (ϑ), 0)|Ft]

= esssupϑ∈Θn+1(P ) E

[
−
(
1 − α

n
Gt,T (ϑ)

)n+1 ∣∣∣Ft

]

= −E

(1 +
tf

(n)
T

n

)n+1 ∣∣∣∣∣Ft

 .

Recall Q(n) ∈ Me
1+ 1

n

(P ), so that, tf
(n)
T > −n holds. Hence, V α,n,0

t (0) < 0. For

any Q ∈ Me
1+ 1

n

(P n,B), we denote

ZQ
t,T :=

ZQ
T

ZQ
t

, and ZQ
t := E

[
dQ

dP

∣∣∣Ft

]
.

Moreover, we define

Ṽ α,n,B
t := essinfQ∈Me

1+ 1
n

(Pn,B) EQ

[(
ZQ

t,T

) 1
n
(
1 +

α

n
B
)−1 ∣∣∣Ft

]
.

Remark that we have

Ṽ α,n,0
t = essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
∣∣∣Ft

]
=
(
C

(n)
t

) 1
n

.

In order to investigate basic properties, we need to show a duality relation-
ship between a portfolio optimization problem and an optimization problem
with respect to equivalent martingale measures.

Theorem 4.1 We have the following duality relationship:

esssup
ϑ∈Θ

(n)
B

E

[
−
(
1 − α

n
Gt,T (ϑ)

)n+1 (
1 +

α

n
B
)n ∣∣∣Ft

]
= −

{
essinfQ∈Me

1+ 1
n

(Pn,B) EQ

[(
ZQ

t,T

) 1
n
(
1 +

α

n
B
)−1 ∣∣∣Ft

]}−n

.(4.1)

Proof. Firstly, we calculate the left hand side of (4.1) as follows:

LHS of (4.1) = − 1
Cn,B

t

essinf
ϑ∈Θ

(n)
B

EPn,B

[(
1 − α

n
Gt,T (ϑ)

)n+1 ∣∣∣Ft

]

12



= − 1
Cn,B

t

EPn,B

(1 +
tf

(n),B
T

n

)n+1 ∣∣∣Ft


= − 1

Cn,B
t

1

C
(n),B
t

EQ(n),B

[(
1 +

tf
(n),B
T

n

) ∣∣∣Ft

]

= − 1
Cn,B

t

1

C
(n),B
t

.

The second equality owes to Proposition 4.4 of GR. On the other hand, we have

RHS of (4.1)

= −
{

essinfQ∈Me

1+ 1
n

(Pn,B) E

[(
ZQ,n,B

t,T Zn,B
t,T

)1+ 1
n
(
Zn,B

t,T

)− 1
n
(
Cn,B

t

) 1
n
∣∣∣Ft

]}−n

= − 1
Cn,B

t

{
essinfQ∈Me

1+ 1
n

(Pn,B) EPn,B

[(
ZQ,n,B

t,T

)1+ 1
n
∣∣∣Ft

]}−n

= − 1
Cn,B

t

{
EQ(n),B

[(
Z

(n),B
t,T

) 1
n
∣∣∣Ft

]}−n

= − 1

Cn,B
t

1

C
(n),B
t

,

where

ZQ,n,B
t,T :=

ZQ,n,B
T

ZQ,n,B
t

and ZQ,n,B
t := EPn,B

[
dQ

dP n,B

∣∣∣Ft

]
.

This completes the proof of Theorem 4.1. �

Theorem 4.1 provides the following representation of Cα,n
t (B):

Corollary 4.2 By the result of Theorem 4.1, we obtain

V α,n,B
t (0) = −(Ṽ α,n,B

t )−n

and

Cα,n
t (B) =

n

α

{
Ṽ α,n,0

t

Ṽ α,n,B
t

− 1

}
.

Next, we study basic properties of Cα,n
t (B) by using the above duality re-

lation. First of all, we introduce the basic properties of the EUIV, which have
been proved in MS.

Proposition 4.3 (Proposition 4 of MS) We assume that B and B′ are bounded
(not necessarily positive). For fixed t ∈ [0, T ] and α > 0, Cα,exp

t (B) has the fol-
lowing properties:

13



(1) −‖B‖∞ ≤ Cα,exp
t (B) ≤ ‖B‖∞,

(2) if B ≤ B′, then Cα,exp
t (B) ≤ Cα,exp

t (B′),
(3) Cα,n

t (λB + (1 − λ)B′) ≤ λCα,n
t (B) + (1 − λ)Cα,n

t (B′), for any λ ∈ [0, 1],
(4) Cα,n

t (B + xt) = Cα,n
t (B) + xt, for any xt ∈ L∞(Ft).

MS called Cα,exp
t (B) a convex monetary utility functional. Furthermore, they

remarked that Cα,exp
t (−B) is close related to a convex monetary risk measure

(see Cheridito, Delbaen and Kupper (2004)).
In order to see that our new valuation Cα,n

t (B) is available as one of ap-
proximate approaches to the EUIV, we wish to prove that Cα,n

t (B) satisfies
Proposition 4.3. Henceforth, we shall prove that this fact holds approximately.
Firstly, we obtain the following result being related to (1) and (2) of Proposition
4.3.

Proposition 4.4 For any t ∈ [0, T ], we have the following:
(1) for B ∈ L∞

+ (P ), 0 ≤ Cα,n
t (B) ≤ ‖B‖∞,

(2) under Assumptions 2.1 and 2.5 for B′, B ≤ B′ =⇒ Cα,n
t (B) ≤ Cα,n

t (B′).

Proof. (1)

V α,n,B
t (0)

V α,n,0
t (0)

=
esssup

ϑ∈Θ
(n)
B

E
[
− (1 − α

nGt,T (ϑ)
)n+1 (1 + α

nB
)n ∣∣∣Ft

]
esssup

ϑ∈Θ
(n)
0

E
[
− (1 − α

nGt,T (ϑ)
)n+1

∣∣∣Ft

]
≤

(
1 +

α

n
‖B‖∞

)n

.

By the same way, B ≥ 0 implies

V α,n,B
t (0)/V α,n,0

t (0) ≥ 1.

Hence, we have 0 ≤ Cα,n
t (B) ≤ ‖B‖∞.

(2) Firstly, we obtain Θ(n)
B′ ⊂ Θ(n)

B , since

ϑ ∈ Θ(n)
B′ ⇒ GT (ϑ) ∈ Ln+1(P n,B′

) ⇒ E
[
Gn+1

T (ϑ)
(
1 +

α

n
B′
)n]

< ∞

⇒ E
[
Gn+1

T (ϑ)
(
1 +

α

n
B
)n]

< ∞ ⇒ GT (ϑ) ∈ Ln+1(P n,B) ⇒ ϑ ∈ Θ(n)
B .

Remark that the last inclusion is derived from Theorem 4.12 of of Choulli,
Krawczyk and Stricker (1999). Thus, we have

V α,n,B
t (0)

V α,n,0
t (0)

=
esssup

ϑ∈Θ
(n)
B

E
[
− (1 − α

nGt,T (ϑ)
)n+1 (1 + α

nB
)n ∣∣∣Ft

]
esssup

ϑ∈Θ
(n)
0

E
[
− (1 − α

nGt,T (ϑ)
)n+1

∣∣∣Ft

]
≤

essinf
ϑ∈Θ

(n)
B

E
[(

1 − α
n
Gt,T (ϑ)

)n+1 (1 + α
n
B′)n ∣∣∣Ft

]
essinf

ϑ∈Θ
(n)
0

E
[(

1 − α
nGt,T (ϑ)

)n+1
∣∣∣Ft

]
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≤
essinf

ϑ∈Θ
(n)
B′

E
[(

1 − α
nGt,T (ϑ)

)n+1 (1 + α
nB′)n ∣∣∣Ft

]
essinf

ϑ∈Θ
(n)
0

E
[(

1 − α
nGt,T (ϑ)

)n+1
∣∣∣Ft

]
=

V α,n,B′
t (0)
V α,n,0

t (0)
.

This completes the proof of (2) of Proposition 4.4. �

Second, we deal with (3) of Proposition 4.3. We define

V
α,n,B
t := essinfQ∈Me

1+ 1
n

(Pn,B) EQ

[(
ZQ

t,T

) 1
n
(
1 − α

n
B
) ∣∣∣Ft

]
.

Set B := B/
(
1 + α

nB
) ≤ B. Since we have

1 − α

n
B =

(
1 +

α

n
B
)−1

,

we obtain
Ṽ α,n,B

t = V
α,n,B
t ≥ V

α,n,B
t .

Now, we denote

C̃α,n
t (B) :=

n

α

{
Ṽ α,n,0

t

V
α,n,B

t

− 1

}
.

We prove, on account, that C̃α,n
t (B) satisfies (3) of Proposition 4.3.

Proposition 4.5 For fixed t ∈ [0, T ], any λ ∈ [0, 1] and B, B′ ∈ L∞
+ (P ) such

that ‖B‖∞, ‖B′‖∞ ≤ n/α, we have

C̃α,n
t (B)(λB + (1 − λ)B′) ≤ λC̃α,n

t (B) + (1 − λ)C̃α,n
t (B′).

Proof. Remark that, for B ∈ L∞
+ (P ), Me

1+ 1
n

(P n,B) = Me
1+ 1

n

(P ) holds. We
have only to prove that(

V
α,n,λB+(1−λ)B′)−1

≤ λ
(
V

α,n,B
t

)−1

+ (1 − λ)
(
V

α,n,B′)−1

.

By the convexity of 1/x, we have(
V

α,n,λB+(1−λ)B′)−1

=
{

essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
λ
(
1 − α

n
B
)

+ (1 − λ)
(
1 − α

n
B′
)) ∣∣∣Ft

]}−1

≤
{
λV

α,n,B

t + (1 − λ)V
α,n,B′

t

}−1

≤ λ

V
α,n,B

t

+
1 − λ

V
α,n,B′
t

.
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Thus, Proposition 4.5 follows. �

Now, in order to see that Cα,n
t (B) satisfies (3) of Proposition 4.3 approximately,

we prove that, for any sufficient large n, C̃α,n
t (B) is very near to Cα,n

t (B).

Proposition 4.6 For any sufficient large n, there exists a C > 0 depending on
‖B‖∞ such that

sup
0≤t≤T

∣∣∣C̃α,n
t (B) − Cα,n

t (B)
∣∣∣ ≤ C

α

n
.

Proof. Remark that we have

C̃α,n
t (B) − Cα,n

t (B) =
n

α

Ṽ α,n,0
t

V
α,n,B

t

Ṽ α,n,B
t − V

α,n,B

t

Ṽ α,n,B
t

. (4.2)

Firstly, we have the following estimation:

Ṽ α,n,0
t

V
α,n,B

t

=
Ṽ α,n,0

t

essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n (

1 − α
nB
) ∣∣∣Ft

]
≤ Ṽ α,n,0

t(
1 − α

n‖B‖∞
)
essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
∣∣∣Ft

]
≤
(
1 − α

n
‖B‖∞

)−1

. (4.3)

Remark that, for any sufficient large n, 1 − α
n‖B‖∞ > 0 holds. Moreover, we

have

Ṽ α,n,B
t − V

α,n,B

t

= essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 +

α

n
B
)−1 ∣∣∣Ft

]
− essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 − α

n
B
) ∣∣∣Ft

]
= essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n

(
1 − α

n
B +

(α

n
B
)2 (

1 +
α

n
B
)−1
) ∣∣∣Ft

]
− essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 − α

n
B
) ∣∣∣Ft

]
≤ E

�Q

[(
Z
�Q
t,T

) 1
n

(
1 − α

n
B +

(α

n
B
)2 (

1 +
α

n
B
)−1
)∣∣∣Ft

]
−E

�Q

[(
Z
�Q

t,T

) 1
n
(
1 − α

n
B
) ∣∣∣Ft

]
≤

(α

n
‖B‖∞

)2

E
�Q

[(
Z
�Q
t,T

) 1
n
(
1 +

α

n
B
)−1 ∣∣∣Ft

]
, (4.4)
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where Q̃ is given by

essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 − α

n
B
) ∣∣∣Ft

]
= E

�Q

[(
Z
�Q
t,T

) 1
n
(
1 − α

n
B
) ∣∣∣Ft

]
.

On the other hand, we have

Ṽ α,n,B
t = essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 +

α

n
B
)−1 ∣∣∣Ft

]
≥ essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 − α

n
B
) ∣∣∣Ft

]
= E

�Q

[(
Z
�Q

t,T

) 1
n
(
1 − α

n
B
) ∣∣∣Ft

]
. (4.5)

By (4.4) and (4.5),

Ṽ α,n,B
t − V

α,n,B
t

Ṽ α,n,B
t

≤
(

α
n‖B‖∞

)2
E
�Q

[(
Z
�Q
t,T

) 1
n (

1 + α
nB
)−1
∣∣∣Ft

]
E
�Q

[(
Z
�Q

t,T

) 1
n (

1 − α
n
B
) ∣∣∣Ft

]
≤

(
α
n‖B‖∞

)2
1 − α

n
‖B‖∞ . (4.6)

As a result, by (4.2),(4.3) and (4.6), we obtain, together with C̃α,n
t (B) ≥

Cα,n
t (B),

sup
0≤t≤T

∣∣∣C̃α,n
t (B) − Cα,n

t (B)
∣∣∣ ≤ n

α

(
α
n
‖B‖∞

)2(
1 − α

n‖B‖∞
)2 ≤ C

α

n
.

�

By using Proposition 4.6 together with Proposition 4.5, we obtain that Cα,n
t (B)

is Ft-measurably convex in B approximately.

Corollary 4.7 Suppose that λ ∈ [0, 1] and B, B′ ∈ L∞
+ (P ). For fixed t ∈ [0, T ]

and any sufficient large n, there exists a constant C > 0 depending on ‖B‖∞
and ‖B′‖∞ such that

Cα,n
t (λB + (1 − λ)B′) ≤ λCα,n

t (B) + (1 − λ)Cα,n
t (B′) + C

α

n
.

Proof. Remark that, for B ∈ L∞
+ (P ), Ṽ α,n,B

t ≥ V
α,n,B
t . By Propositions 4.5

and 4.6, we have

Cα,n
t (λB + (1 − λ)B′) ≤ C̃α,n

t (λB + (1 − λ)B′)

≤ λC̃α,n
t (B) + (1 − λ)C̃α,n

t (B′)

≤ λ
(
Cα,n

t (B) + C
α

n

)
+ (1 − λ)

(
Cα,n

t (B′) + C
α

n

)
= λCα,n

t (B) + (1 − λ)Cα,n
t (B′) + C

α

n
.
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�

Thirdly, we concentrate on (4) of Proposition 4.3. By a similar way with the
above, we prove the following:

Proposition 4.8 Let xt be a bounded Ft-measurable random variable. For fixed
t ∈ [0, T ] and any sufficient large n, there exists a constant C > 0 depending on
‖xt‖∞ and ‖B‖∞ such that

|Cα,n
t (B + xt) − Cα,n

t (B) − xt| ≤ C
α

n
. (4.7)

Proof. We prove firstly the case where Cα,n
t (B + xt) − Cα,n

t (B) − xt ≥ 0.
Remark that

Cα,n
t (B + xt) − Cα,n

t (B) ≤ n

α
Ṽ α,n,0

t

Ṽ α,n,B
t − V

α,n,B+xt

t

Ṽ α,n,B
t V

α,n,B+xt

t

. (4.8)

Firstly, we have

Ṽ α,n,B
t − V

α,n,B+xt

t

= essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 +

α

n
B
)−1 ∣∣∣Ft

]
− essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 − α

n
(B + xt)

) ∣∣∣Ft

]
≤ E

�Q

[(
Z
�Q

t,T

) 1
n
(
1 +

α

n
B
)−1 ∣∣∣Ft

]
− E

�Q

[(
Z
�Q

t,T

) 1
n
(
1 − α

n
(B + xt)

) ∣∣∣Ft

]
≤
((α

n
‖B‖∞

)2

+
α

n
xt

)
E
�Q

[(
Z

�Q
t,T

) 1
n
∣∣∣Ft

]
, (4.9)

where Q̃ ∈ Me
1+ 1

n

(P ) is given by

essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 − α

n
(B + xt)

) ∣∣∣Ft

]
= E

�Q

[(
Z
�Q
t,T

) 1
n
(
1 − α

n
(B + xt)

) ∣∣∣Ft

]
.

The last inequality of (4.9) is given from(
1 +

α

n
B
)−1

− 1 +
α

n
B =

(α

n
B
)2 (

1 +
α

n
B
)−1

≤
(α

n
B
)2

.

Next, we have

Ṽ α,n,B
t V

α,n,B+xt

t

= essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 +

α

n
B
)−1 ∣∣∣Ft

]
E
�Q

[(
Z
�Q

t,T

) 1
n
(
1 − α

n
(B + xt)

) ∣∣∣Ft

]
≥

(
1 +

α

n
‖B‖∞

)−1

Ṽ α,n,0
t

(
1 − α

n
(‖B‖∞ + ‖xt‖∞)

)
E
�Q

[(
Z
�Q

t,T

) 1
n
∣∣∣Ft

]
.
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Thus, we can conclude

RHS of (4.8)

≤ n

α
Ṽ α,n,0

t

((
α
n
‖B‖∞

)2 + α
n
xt

)
E
�Q

[(
Z
�Q

t,T

) 1
n
∣∣∣Ft

]
(
1 + α

n‖B‖∞
)−1 (1 − α

n(‖B‖∞ + ‖xt‖∞)
)
E
�Q

[(
Z
�Q
t,T

) 1
n
∣∣∣Ft

]
Ṽ α,n,0

t

=

(
α
n‖B‖2∞ + xt

) (
1 + α

n‖B‖∞
)

1 − α
n
(‖B‖∞ + ‖xt‖∞)

(4.10)

On the other hand,

1 + α
n‖B‖∞

1 − α
n (‖B‖∞ + ‖xt‖∞)

= 1 +
α

n

2‖B‖∞ + ‖xt‖∞
1 − α

n(‖B‖∞ + ‖xt‖∞)
≤ 1 + C

α

n
. (4.11)

(4.10) and (4.11) imply (4.7) for the case where Cα,n
t (B+xt)−Cα,n

t (B)−xt ≥ 0.
Next, we treat the reverse case. Without loss of generality, we assume that

xt is positive. Remark that(
1 +

α

n
(B + xt)

)−1

≤ 1 − α

n
(B + xt) +

α2

n2
(B + xt)2.

Since we can prove

V
α,n,B

t − Ṽ α,n,B+xt

t ≥
(

α

n
xt − 2

α2

n2

(‖B‖2
∞ + ‖xt‖2

∞
))

E
�Q

[(
Z

�Q
t,T

) 1
n
∣∣∣Ft

]
,

where Q̃ ∈ Me
1+ 1

n

(P ) is given by

essinfQ∈Me

1+ 1
n

(P ) EQ

[(
ZQ

t,T

) 1
n
(
1 − α

n
B
) ∣∣∣Ft

]
= E

�Q

[(
Z
�Q

t,T

) 1
n
(
1 − α

n
B
) ∣∣∣Ft

]
,

and

V
α,n,B

t Ṽ α,n,B+xt

t ≤ E
�Q

[(
Z
�Q

t,T

) 1
n
∣∣∣Ft

]
Ṽ α,n,0

t ,

there exists a constant C > 0 such that

Cα,n
t (B + xt) − Cα,n

t (B) ≥ n

α
Ṽ α,n,0

t

V
α,n,B

t − Ṽ α,n,B+xt

t

V
α,n,B

t Ṽ α,n,B+xt

t

≥ xt − 2
α

n

(‖B‖2
∞ + ‖xt‖2

∞
)

≥ xt − C
α

n
.

Hence, Proposition 4.8 follows. �
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5 Asymptotic behavior

We have to study the asymptotic behavior of our new valuation Cα,n
t (B) as

n tends to ∞ so as to make sure that Cα,n
t (B) is justified as an approximate

approach to the EUIV. In this section, we prove that Cα,n
t (B) converges to

the EUIV in probability. Remark that GR have proved that the p-optimal
martingale measure converges to the minimal entropy martingale measure as p
tends to 1. In the proof of the following theorem, this asymptotic behavior will
play a vital role.

Theorem 5.1 Suppose that B ∈ L∞
+ (P ). For fixed t ∈ [0, T ], Cα,n

t (B) con-
verges to Cα,exp

t (B) in probability as n → ∞.

Proof. Step 1 We shall prove that
V α,n,B

t

V α,n,0
t

converges to

esssupϑ∈Θexp E [Uα,exp(0, Gt,T (ϑ), B)|Ft]
esssupϑ∈Θexp E [Uα,exp(0, Gt,T (ϑ), 0)|Ft]

in probability.

For small ε > 0, there exists a sufficient large odd number n0 such that, for
any odd number n ≥ n0,

(1 − ε)eαB ≤ eαB − ε ≤
(
1 +

α

n
B
)n

≤ eαB P - a.s. .

Since n + 1 is even, we have

esssup
ϑ∈Θ

(n)
B

E

[
−
(
1 − α

n
Gt,T (ϑ)

)n+1

eαB
∣∣∣Ft

]
≤ V α,n,B

t (0)

≤ (1 − ε) esssup
ϑ∈Θ

(n)
B

E

[
−
(
1 − α

n
Gt,T (ϑ)

)n+1

eαB
∣∣∣Ft

]
. (5.1)

Now, we define a probability measure P exp,B equivalent to P as

dP exp,B

dP
= Cexp,BeαB,

where Cexp,B ∈ R+. We denote

Zexp,B
t := E

[
dP exp,B

dP

∣∣∣Ft

]
,

and
Zexp,B

t,T := Zexp,B
T /Zexp,B

t = Cexp,B
t eαB ,

where Cexp,B
t is an Ft-measurable positive random variable. Then, we have

LHS of (5.1) =
1

Cexp,B
t

esssup
ϑ∈Θ

(n)
B

EP exp,B

[
−
(
1 − α

n
Gt,T (ϑ)

)n+1 ∣∣∣Ft

]
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= − 1
Cexp,B

t

essinfϑ∈Θn+1(P exp,B) EP exp,B

[(
1 − α

n
Gt,T (ϑ)

)n+1 ∣∣∣Ft

]

= − 1

Cexp,B
t

EP exp,B

(1 +
tf

(n),exp,B
T

n

)n+1 ∣∣∣∣∣Ft

 ,

where tf
(n),exp,B
T is the projection of “1” onto tKn+1(P exp,B) in Ln+1(P exp,B).

Remark that, B ∈ L∞
+ (P ) yields

Θ(n)
B = Θn+1(P n,B) = Θn+1(P exp,B) = Θn+1(P ).

By Lemma 4.13 of GR, tf
(n),exp,B
T converges in probability to tfexp,B

T , which is in
∩n≥0

tKn+1(P exp,B). Thus, for every sequence nk, we can extract a subsequence
(still denoted by nk) such that

tf
(nk),exp,B
T → tfexp,B

T P - a.s. .

Remark that there exists the minimal entropy martingale measure P
exp,B

for
P exp,B , the density process of which satisfies RLLogL(P exp,B). We denote

Z
exp,B

t := EP exp,B

[
dP

exp,B

dP exp,B

∣∣∣Ft

]
,

and, by the proof of Proposition 4.15 of GR, we can represent

Z
exp,B
t,T := Z

exp,B
T /Z

exp,B
t = C

exp,B
t exp(tfexp,B

T ),

where C
exp,B

t is an Ft-measurable positive random variable. In addition, the
proof of Proposition 4.15 of GR implies that

lim
nk→∞EP exp,B

(1 +
tf

(nk),exp,B
T

nk

)nk+1 ∣∣∣Ft


= lim

nk→∞EP exp,B

[(
1 +

tf
(nk),exp,B
T

nk

)nk ∣∣∣Ft

]
= EP exp,B

[
exp
(

tfexp,B
T

) ∣∣∣Ft

]
P - a.s. .

Hence, we obtain

EP exp,B

(1 +
tf

(n),exp,B
T

n

)n+1 ∣∣∣Ft

→ EP exp,B

[
exp
(

tfexp,B
T

) ∣∣∣Ft

]
(5.2)

in probability. Moreover, as for the sequence tf
(n)
T , Lemma 4.13 of GR yields

that tf
(n)
T → tfexp

T in probability. Besides, tfexp
T is included in ∩n≥0

tKn+1(P ).
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Remark that the minimal entropy martingale measure P for P is given by

dP

dP
= C exp(0fexp

T ),

where C ∈ R+. Hence, the same sort of argument as the above shows

V α,n,0
t → −E

[
exp(tfexp

T )|Ft

]
in probability. (5.3)

Since ε is arbitrary, (5.1), (5.2) and (5.3) yield

V α,n,B
t

V α,n,0
t

→
E
[
exp(tfexp,B

T )eαB
∣∣∣Ft

]
E[exp(tfexp

T )|Ft]
in probability . (5.4)

Now, we shall prove that

EP exp,B

[
exp(tfexp,B

T )|Ft

]
= essinfϑ∈Θexp EP exp,B [exp(−αGt,T (ϑ))|Ft] . (5.5)

By Proposition 1 of MS, there exists an η ∈ Θexp such that Gt,T (η) = tfexp,B
T .

For any ϑ ∈ Θexp, we denote −αϑ = ϑ + η. Then, we have

essinfϑ∈Θexp EP exp,B [exp(−αGt,T (ϑ))|Ft]

= essinfϑ∈Θexp EP exp,B

[
eGt,T (ϑ)eGt,T (η)

∣∣∣Ft

]
=

1

C
exp,B

t

essinfϑ∈Θexp E
P

exp,B

[
eGt,T (ϑ)

∣∣∣Ft

]
.

Jensen’s inequality yields

E
P

exp,B

[
eGt,T (ϑ)

∣∣∣Ft

]
≥ exp{E

P
exp,B [Gt,T (ϑ)|Ft]} = 1.

On the other hand, if we set ϑ ≡ 0, then

E
P

exp,B

[
eGt,T (ϑ)

∣∣∣Ft

]
= 1.

Hence, we obtain (5.5).
Let us go back to (5.4). We can conclude that, together with (5.5),

V α,n,B
t

V α,n,0
t

→
esssupϑ∈Θexp E

[
Uα,exp(0, Gt,T (ϑ), B)

∣∣∣Ft

]
esssupϑ∈Θexp E

[
Uα,exp(0, Gt,T (ϑ), 0)

∣∣∣Ft

] in probability .

Step 2 We prove the following:

Lemma 5.2 Let A be a compact set on R and {Xn}n≥1 a sequence of A-valued
random variables such that Xn converges to a random variable X in probability.
Moreover, suppose that a sequence fn of continuous functions converges to a
continuous function f on A. Then, we have

fn(Xn) → f(X) in probability.
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Proof of Lemma 5.2. We fix an ε > 0 arbitrarily. We have only to show

lim
n→∞P ({|fn(Xn) − f(X)| < ε}) = 1.

Now, we calculate the lower bound of the left hand side.

P ({|fn(Xn) − f(X)| < ε})
= P ({|fn(Xn) − f(Xn) + f(Xn) − f(X)| < ε})
≥ P ({|fn(Xn) − f(Xn)| + |f(Xn) − f(X)| < ε})
≥ P ({|fn(Xn) − f(Xn)| < ε/2} ∩ {|f(Xn) − f(X)| < ε/2})
= P ({|fn(Xn) − f(Xn)| < ε/2}) + P ({|f(Xn) − f(X)| < ε/2})

−P ({|fn(Xn) − f(Xn)| < ε/2} ∪ {|f(Xn) − f(X)| < ε/2})
≥ P ({|fn(Xn) − f(Xn)| < ε/2}) + P ({|f(Xn) − f(X)| < ε/2}) − 1

Since Xn ∈ A for any n ≥ 1 P -a.s. and fn → f on A, we have, for any sufficient
large n,

P ({|fn(Xn) − f(Xn)| < ε/2}) = 1.

Moreover, there exists a δ > 0 such that |x − y| < δ ⇒ |f(x) − f(y)| < ε/2.
Thus,

P ({|f(Xn) − f(X)| < ε/2}) ≥ P ({|Xn − X| < δ}) → 1.

This completes the proof of Lemma 5.2 �

Step 3 We denote

Un :=
V α,n,B

t (0)
V α,n,0

t (0)
.

Then, we can represent

Cα,n
t (B) =

n

α

{
U

1
n
n − 1

}
.

Furthermore, Un satisfies

1 ≤ Un ≤
(
1 +

α

n
‖B‖∞

)n

≤ eα‖B‖∞ .

By Step 1, Un converges to

esssupϑ∈Θexp E
[
Uα,exp(0, Gt,T (ϑ), B)

∣∣∣Ft

]
esssupϑ∈Θexp E

[
Uα,exp(0, Gt,T (ϑ), 0)

∣∣∣Ft

] (=: U)

in probability. Incidentally, MS have proved

Cα,exp
t (B) =

1
α

log U.
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Moreover, fn(x) :=
n

α

{
x1/n − 1

}
converges to f(x) :=

1
α

log x on the compact

set [1, exp{α‖B‖∞}]. By Lemma 5.2, we can conclude that

Cα,n
t (B) → Cα,exp

t (B) in probability.

This completes the proof of Theorem 5.1. �

6 Extension to bid valuation

The definition of the utility indifference valuation is given from view of a seller.
In other words, it is a proposition of an asking-price for a contingent claim.
Thus, when we try to suggest a bid-price, it is natural that we improve the
utility indifference valuation to an adapted process Ct(B) satisfying

esssupϑ∈Θ E
[
U(xt + Gt,T (ϑ))

∣∣∣Ft

]
= esssupϑ∈Θ E

[
U(xt − Ct(B) + Gt,T (ϑ) + B)

∣∣∣Ft

]
.

In particular, as for the EUIV, its bid valuation is given by −Cα,exp
t (−B).

Remark that the EUIV is defined for bounded contingent claims which may value
in negative numbers. On the other hand, our valuation Cα,n

t (B) is available for
only positive contingent claims. At least, we have to restrict that B has a lower
bound in order that Cα,n

t (B) is well-defined. Hence, we should define a bid
valuation other than the ask valuation Cα,n

t (B). Firstly, we define obediently a
bid valuation C

α,n
t (B) corresponding to our new valuation as follows:

esssup
ϑ∈Θ

(n)
0

E

[
−
(
1 − α

n
Gt,T (ϑ)

)n+1 ∣∣∣Ft

]
= esssup

ϑ∈Θ
(n)
B

E

[
−
(
1 − α

n
C

α,n
t (B)

)−n (
1 − α

n
Gt,T (ϑ)

)n+1 (
1 − α

n
B
)n ∣∣∣Ft

]
,

(6.1)

where Θ
(n)
0 and Θ

(n)
B are suitable spaces of Rd-valued predictable processes.

However, C
α,n

t (B) is not convenient, because if we denote

dP
n,B

dP
:= C

n,B
(
1 − α

n
B
)n

,

where C
n,B

is a positive constant, then P
n,B

is not equivalent to P in general.
Note that we should set Θ

(n)
B = Θn+1(P

n,B
) for (6.1). Thus, we suggest, in this

section, another definition of a bid valuation, denoted by Čα,n
t (B), for Cα,n

t (B)
by an approximate way as follows:

esssup
ϑ∈Θ̌

(n)
0

E

[
−
(
1 − α

n
Gt,T (ϑ)

)n+1 ∣∣∣Ft

]
= esssup

ϑ∈Θ̌
(n)
B

E

[
−
(
1 +

α

n
Čα,n

t (B)
)n (

1 − α

n
Gt,T (ϑ)

)n+1 (
1 +

α

n
B
)−n ∣∣∣Ft

]
,
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where Θ̌(n)
B := Θn+1(P̌ n,B) and P̌ n,B is defined as

dP̌ n,B

dP
:= Čn,B

(
1 +

α

n
B
)−n

.

Note that Čn,B is a positive constant. By the definition of P̌ n,B, there exists the

1+
1
n

-optimal martingale measure Q̌(n),B with respect to P̌ n,B in Me
1+ 1

n

(P̌ n,B),

and its density process Ž(n),B with respect to P̌ n,B satisfies R1+ 1
n
(P̌ n,B). More-

over, if we denote

V̌ α,n,B
t (xt) := esssup

ϑ∈Θ̌
(n)
B

E

[
−
(
1 +

α

n
xt

)n (
1 − α

n
Gt,T (ϑ)

)n+1 (
1 +

α

n
B
)−n ∣∣∣Ft

]
.

then, we have, by the definition of Čα,n
t (B),

V̌ α,n,0
t (0) = V̌ α,n,B

t (Čα,n
t (B)).

This implies that

V̌ α,n,B
t (0)

V̌ α,n,0
t (0)

=
V̌ α,n,B

t (0)

V̌ α,n,B
t (Čα,n

t (B))

=
esssup

ϑ∈Θ̌
(n)
B

E
[
− (1 − α

n
Gt,T (ϑ)

)n+1 (1 + α
n
B
)−n

∣∣∣Ft

]
esssup

ϑ∈Θ̌
(n)
B

E
[
− (1 + α

n Čα,n
t (B)

)n (
1 − α

nGt,T (ϑ)
)n+1 (1 + α

nB
)−n

∣∣∣Ft

]
=

1(
1 + α

n
Čα,n

t (B)
)n .

Hence, Čα,n
t (B) is represented as

Čα,n
t (B) =

n

α


(

V̌ α,n,B
t (0)

V̌ α,n,0
t (0)

)− 1
n

− 1

 .

Just as in the ask valuation, we give a duality relationship with respect to
Čα,n

t (B).

Theorem 6.1 We have the following duality relationship with respect to Čα,n
t (B):

esssup
ϑ∈Θ̌

(n)
B

E

[
−
(
1 − α

n
Gt,T (ϑ)

)n+1 (
1 +

α

n
B
)−n ∣∣∣Ft

]
= −

{
essinfQ∈Me

1+ 1
n

(P̌n,B) EQ

[
(ZQ

t,T )
1
n

(
1 +

α

n
B
) ∣∣∣Ft

]}−n

. (6.2)
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Proof. We denote

Žn,B
t,T :=

Žn,B
T

Žn,B
t

= Čn,B
t

(
1 +

α

n
B
)−n

and Žn,B
t := E

[
dP̌ n,B

dP

∣∣∣Ft

]
,

where Čn,B
t is an Ft-measurable positive random variable. Moreover, we denote

Ž
(n),B
t,T :=

Ž
(n),B
T

Ž
(n),B
t

= Č
(n),B
t

(
1 +

tf̌
(n),B
T

n

)n

and Ž
(n),B
t := EP̌n,B

[
dQ̌(n),B

dP̌ n,B

∣∣∣Ft

]
,

where Č
(n),B
t is an Ft-measurable positive random variable, and tf̌

(n),B
T ∈

tKn+1(P̌ n,B). In particular, −tf̌
(n),B
T /n is the projection of “1” onto tKn+1(P̌ n,B)

in Ln+1(P̌ n,B). Now, we compute the left hand side of (6.2).

LHS of (6.2) = − 1

Čn,B
t

essinf
ϑ∈Θ̌

(n)
B

EP̌n,B

[(
1 − α

n
Gt,T (ϑ)

)n+1 ∣∣∣Ft

]

= − 1

Čn,B
t

EP̌n,B

(1 +
tf̌

(n),B
T

n

)n+1 ∣∣∣Ft


= − 1

Čn,B
t

1

Č
(n),B
t

EQ̌(n),B

[(
1 +

tf̌
(n),B
T

n

) ∣∣∣Ft

]

= − 1

Čn,B
t

1

Č
(n),B
t

.

On the other hand, we have

RHS of (6.2)

= −
{

essinfQ∈Me

1+ 1
n

(P̌n,B) E

[(
ŽQ,n,B

t,T Žn,B
t,T

)1+ 1
n
(
Žn,B

t,T

)− 1
n
(
Čn,B

t

) 1
n
∣∣∣Ft

]}−n

= − 1
Čn,B

t

{
essinfQ∈Me

1+ 1
n

(P̌n,B) EP̌n,B

[(
ŽQ,n,B

t,T

)1+ 1
n
∣∣∣Ft

]}−n

= − 1

Čn,B
t

{
EQ̌(n),B

[(
Ž

(n),B
t,T

) 1
n
∣∣∣Ft

]}−n

= − 1

Čn,B
t

1

Č
(n),B
t

,

where

ŽQ,n,B
t,T :=

ŽQ,n,B
T

ŽQ,n,B
t

and ŽQ,n,B
t := EP̌n,B

[
dQ

dP̌ n,B

∣∣∣Ft

]
.

This completes the proof of Theorem 6.1. �

By using Theorem 6.1, we obtain another representation of Čα,n
t (B).
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Corollary 6.2 Denote

˜̌V α,n,B

t := essinfQ∈Me

1+ 1
n

(P̌n,B) EQ

[
(ZQ

t,T )
1
n

(
1 +

α

n
B
) ∣∣∣Ft

]
.

Then, we have

V̌ α,n,B
t (0) = −

(˜̌V α,n,B

t

)−n

,

and

Čα,n
t (B) =

n

α

 ˜̌V
α,n,B

t˜̌V α,n,0

t

− 1

 .

As in Sections 4 and 5, we have to investigate whether or not Čα,n
t (B) sat-

isfies Proposition 4.3 approximately and converges to the EUIV. Since C
α,n

t (B)
defined in (6.1) is equivalent to −Cα,n

t (−B) as long as B is bounded and n is a
sufficient large, we can prove easily that C

α,n
t (B) approximately satisfies (1), (2)

and (4) of Proposition 4.3, and the reverse inequality of (3), that is, we can say
that C

α,n

t (B) is an approximate concave monetary utility functional. Thus, we
have only to study the relationship between Čα,n

t (B) and C
α,n

t (B) in order to
confirm that Čα,n

t (B) is meaningful as a bid valuation of our new approximate
approach to the EUIV.

Theorem 6.3 For B ∈ L∞
+ (P ) and any sufficient large n, there exists a con-

stant C > 0 depending on ‖B‖∞ such that

sup
0≤t≤T

|Čα,n
t (B) − C

α,n

t (B)| ≤ C
α

n
.

Proof. Remark that, since B is bounded and n is a sufficient large, P
n,B

is
equivalent to P and Θ(n)

B = Θ̌(n)
B = Θ

(n)

B holds. Now, we define ˇ̌C
α,n

t (B) as an
adapted process satisfying

esssup
ϑ∈Θ

(n)
B

E

[
−
(
1 − α

n
Gt,T (ϑ)

)n+1 ∣∣∣Ft

]
= esssup

ϑ∈Θ
(n)
B

E

[
−
(
1 − α

n
ˇ̌C

α,n

t (B)
)−n (

1 − α

n
Gt,T (ϑ)

)n+1 (
1 +

α

n
B
)−n ∣∣∣Ft

]
.

Then, we have

ˇ̌C
α,n

t (B) =
Čα,n

t (B)
1 + α

n Čα,n
t (B)

= −n

α

 ˜̌V
α,n,0

t˜̌V α,n,B

t

− 1

 .

We prove that there exists a C > 0 such that C
α,n
t (B) − ˇ̌C

α,n

t (B) ≤ C
α

n
.

Note that we have

C
α,n
t (B) − ˇ̌C

α,n

t (B) = −Cα,n
t (−B) − ˇ̌C

α,n

t (B)
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= −n

α

{
Ṽ α,n,0

t

Ṽ α,n,−B
t

− 1

}
+

n

α

 ˜̌V
α,n,0

t˜̌V α,n,B

t

− 1


=

n

α

Ṽ α,n,0
t˜̌V α,n,B

t

Ṽ α,n,−B
t − ˜̌V α,n,B

t

Ṽ α,n,−B
t

.

We estimate the right hand side of the above. Firstly, we have

Ṽ α,n,0
t˜̌V α,n,B

t

=
Ṽ α,n,0

t

essinfQ∈Me

1+ 1
n

(P̌n,B) EQ

[
(ZQ

t,T ) 1
n

(
1 + α

n
B
) ∣∣∣Ft

] ≤ 1.

Next, we compute Ṽ α,n,−B
t − ˜̌V α,n,B

t as follows:

Ṽ α,n,−B
t − ˜̌V α,n,B

t

= essinfQ∈Me

1+ 1
n

(P̌n,B) EQ

[
(ZQ

t,T )
1
n

(
1 − α

n
B
)−1 ∣∣∣Ft

]
− essinfQ∈Me

1+ 1
n

(P̌n,B) EQ

[
(ZQ

t,T )
1
n

(
1 +

α

n
B
) ∣∣∣Ft

]
= essinfQ∈Me

1+ 1
n

(P̌n,B) EQ

[
(ZQ

t,T )
1
n

(
1 +

α

n
B +

(α

n
B
)2 (

1 − α

n
B
)−1
)∣∣∣Ft

]
− essinfQ∈Me

1+ 1
n

(P̌n,B) EQ

[
(ZQ

t,T )
1
n

(
1 +

α

n
B
) ∣∣∣Ft

]
≤ EQ′

[
(ZQ′

t,T )
1
n

(
1 +

α

n
B +

(α

n
B
)2 (

1 − α

n
B
)−1

−
(
1 +

α

n
B
)) ∣∣∣Ft

]
≤

(α

n
‖B‖∞

)2 (
1− α

n
‖B‖∞

)−1

EQ′
[
(ZQ′

t,T )
1
n

∣∣∣Ft

]
,

where

essinfQ∈Me

1+ 1
n

(P̌n,B) EQ

[
(ZQ

t,T )
1
n

(
1 +

α

n
B
) ∣∣∣Ft

]
= EQ′

[
(ZQ′

t,T )
1
n

(
1 +

α

n
B
) ∣∣∣Ft

]
.

Remark that Me
1+ 1

n

(P n,B) = Me
1+ 1

n

(P̌ n,B). Moreover, we have

Ṽ α,n,−B
t = essinfQ∈Me

1+ 1
n

(P̌n,B) EQ

[
(ZQ

t,T )
1
n

(
1 − α

n
B
)−1 ∣∣∣Ft

]
≥ essinfQ∈Me

1+ 1
n

(P̌n,B) EQ

[
(ZQ

t,T )
1
n

(
1 +

α

n
B
) ∣∣∣Ft

]
= EQ′

[
(ZQ′

t,T )
1
n

(
1 +

α

n
B
) ∣∣∣Ft

]
≥ EQ′

[
(ZQ′

t,T )
1
n

∣∣∣Ft

]
.

As a result, we obtain

Ṽ α,n,−B
t − ˜̌V α,n,B

t

Ṽ α,n,−B
t

≤
(α

n
‖B‖∞

)2 (
1 − α

n
‖B‖∞

)−1

.
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Hence, we can conclude that there exists a C > 0 such that

C
α,n
t (B) − ˇ̌C

α,n

t (B) ≤ n

α

(α

n
‖B‖∞

)2 (
1 − α

n
‖B‖∞

)−1

≤ C
α

n
.

On the other hand, since Ṽ α,n,−B
t − ˜̌V α,n,B

t ≥ 0, we obtain C
α,n
t (B) −

ˇ̌C
α,n

t (B) ≥ 0. Moreover, since Čα,n
t (B) ≤ ‖B‖∞, there exists a C > 0 such that

0 ≤ Čα,n
t (B) − ˇ̌C

α,n

t (B) ≤ Čα,n
t (B) − Čα,n

t (B)
1 + α

n Čα,n
t (B)

≤ C
α

n
.

Thus, Theorem 6.3 follows. �

Consequently, the bid valuation Čα,n
t (B) satisfies approximately the same

basic properties as a concave monetary utility functional, and converges to the
bid valuation of the EUIV in probability.

7 Concluding Remarks

The results of Sections 4, 5 and 6 mean that, under some assumptions related

to the 1 +
1
n

-optimal martingale measure, our new valuations Cα,n
t (B) and

Čα,n
t (B) are available as approximate approaches to the EUIV for ask and bid,

respectively. In other words, we succeed in relaxing the condition (1.2) to (1.3)
for a sufficient large n by using a kind of power functions. In addition, Section
3 shows that there exist many important examples satisfying the all standing
assumptions.

On the other hand, in order that we calculate our valuation Cα,n
t (B) con-

cretely, we need to obtain the density of P n,B and the projection of “1” onto
tKn+1(P n,B). These are big difficulties for us to realize our new valuation.
However, there exist several cases where we can compute concretely the density
of the p-optimal martingale measure, for example, see Hobson (2004).

Finally, we eliminate some future problems. We have not researched for
the dynamics of our new valuation in this paper. Hence, very little is known
about properties of our valuation as processes. For example, the time-consistent
or the locally Lipschitz continuity in α (see Section 5 of MS). Furthermore,
we are interested in the asymptotic behavior of Cα,n

t (B) as α tends to 0 or
∞. For example, MS have proved that the EUIV converges to the conditional
expectation under the minimal entropy martingale measure as α tends to 0, and
to the superreplication price process as α tends to ∞.
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