GSの直交化と直交補空間

Nobuyuki TOSE

December 12, 2019

直交射影

V を \mathbf{R}^n の部分空間とする. $V \neq \{\vec{0}\}$ として, V の正規直交基底を

$$\vec{p}_1,\cdots,\vec{p}_\ell$$

が与えられているとする. このとき $\vec{x} \in \mathbf{R}^n$ に対して

$$Pec{x} := \sum_{j=1}^\ell (ec{x}, ec{p}_j) ec{p}_j$$

とする. このとき $1 \le k \le \ell$ に対して

$$(\vec{x} - P\vec{x}, \vec{p}_k) = (\vec{x} - (\vec{x}, \vec{p}_1)\vec{p}_1 - \dots - (\vec{x}, \vec{p}_\ell)\vec{p}_\ell, \vec{p}_k)$$

= $(\vec{x}, \vec{p}_k) - (\vec{x}, \vec{p}_k) = 0$

から $\vec{x} - P\vec{x} \perp V$

直交射影(2)—一意性

「V の別の正規直交基底を用いても $P\vec{x}$ は変わらない.」 実際 $\vec{x}_*, \vec{x}_\# \in V$ に対して

$$\vec{x} - \vec{x}_* \perp V, \ \vec{x} - \vec{x}_\# \perp V \Rightarrow \vec{x}_* = \vec{x}_\#$$

これは

$$\vec{x}_* - \vec{x}_\# = \{\vec{x} - \vec{x}_\#\} - \{\vec{x} - \vec{x}_*\} \perp V$$

 $\sum x_* - \vec{x}_\# \in V$ retard or

$$\|\vec{x}_* - \vec{x}_\#\|^2 = (\vec{x}_* - \vec{x}_\#, \vec{x}_* - \vec{x}_\#) = 0$$

から $\vec{x}_* = \vec{x}_\#$ が従う.

「 $P\vec{x}$ を \vec{x} の V への直交射影と呼びます.」

GS の直交化 (1)

 \mathbf{R}^n の部分空間 V に対して基底 $\vec{q}_1, \cdots, \vec{q}_\ell \in V$ があるとします.そして V の部分空間

$$V_j = L(\vec{q}_1, \ldots, \vec{q}_j) \subset V$$

を定めます. V_j に正規直交基底 $\vec{p}_1, \dots, \vec{p}_j$ が与えられているとします. このとき

$$ec{r}_{j+1} := ec{q}_{j+1} - \sum_{k=1}^{j} (ec{q}_{j+1}, ec{p}_k) ec{p}_k \in L(ec{q}_1, \dots, ec{q}_j, ec{q}_{j+1}) = V_{j+1} \subset V$$

は

$$\vec{r}_{j+1} \perp V_j$$

となります. さらに $\vec{r}_{j+1} \neq \vec{0}$ となります. もし $\vec{r}_{j+1} = \vec{0}$ ならば

$$ec{q}_{j+1} = \sum_{k=1}^J (ec{q}_{j+1}, ec{p}_k) ec{p}_k = *_1 ec{q}_1 + \ldots + *_j ec{q}_j$$

となり $\vec{q}_1,\ldots,\vec{q}_i,\vec{q}_{i+1}$ が線型独立であることに反しまず. $4 \ge k + 2 \ge k +$

Nobuyuki TOSE GS の直交化と直交補空間

GS の直交化 (2)

ここで

$$\vec{p}_{j+1} := \frac{1}{\|\vec{r}_{j+1}\|} \vec{r}_{j+1}$$

と定めると

$$\vec{p}_1, \dots, \vec{p}_j, \vec{p}_{j+1}$$
は V_{j+1} の正規直交基底となります

正規直交基底の存在と延長

定理1

 \mathbf{R}^n の部分空間 $V(\neq \{\vec{0}\})$ に対して正規直交基底が存在します.

定理2

 $V \subset W$ を満たす \mathbf{R}^n の部分空間 V, W が与えられているとします. $\vec{p}_1, \ldots, \vec{p}_\ell$ が V の正規直交基底であるとき, W の正規直交基底 $\vec{p}_1, \ldots, \vec{p}_\ell, \ldots, \vec{p}_m$ が存在します.

直交補空間(1)

Rの部分空間Vに対して

$$V^{\perp} := \{ \vec{w}; \ (\vec{w}, \vec{v}) = 0 \ (\vec{v} \in V) \}$$

は部分空間となります(2019L1712/07, 確認問題 VII). これを V の直交補空間と呼びます.

 $\vec{x} \in \mathbf{R}^n$ に対して \vec{x} の V への直交射影を \vec{v} とすると

$$\vec{x} - \vec{v} \perp V$$
 i.e. $\vec{x} - \vec{v} \in V^{\perp}$

となります. $\vec{w} := \vec{x} - \vec{v}$ と定めると

$$\vec{x} = \vec{v} + \vec{w}, \ \vec{v} \in V, \vec{w} \in V^{\perp}$$

から

$$\mathbf{R}^n = V + V^{\perp}$$

直交補空間(2)

実際

$$\vec{v} + \vec{w} = \vec{0}, \quad \vec{v} \in V, \ \vec{w} \in V^{\perp}$$

とすると

$$\|\vec{v}\|^2 = (\vec{v}, \vec{v}) = (\vec{v}, -\vec{w}) = -(\vec{v}, \vec{w}) = 0$$

から $\vec{v} = \vec{0}$, さらに $\vec{w} = -\vec{v} = \vec{0}$ であることが分かります. 以上で

$$\mathbf{R}^n = V \oplus V^{\perp}$$

であることが分かります. 特に

$$\dim V + \dim V^{\perp} = n$$

が成立します.